Scalable Differentiable Causal Discovery in the Presence of Latent Confounders with Skeleton Posterior (Extended Version)
- URL: http://arxiv.org/abs/2406.10537v1
- Date: Sat, 15 Jun 2024 07:40:36 GMT
- Title: Scalable Differentiable Causal Discovery in the Presence of Latent Confounders with Skeleton Posterior (Extended Version)
- Authors: Pingchuan Ma, Rui Ding, Qiang Fu, Jiaru Zhang, Shuai Wang, Shi Han, Dongmei Zhang,
- Abstract summary: Differentiable causal discovery has made significant advancements in the learning of directed acyclic graphs.
Existing differentiable MAG learning algorithms have been limited to small datasets and failed to scale to larger ones.
We propose SPOT (Skeleton Posterior-guided OpTimization), a two-phase framework that harnesses skeleton posterior for differentiable causal discovery in the presence of latent confounders.
- Score: 44.54523003453584
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Differentiable causal discovery has made significant advancements in the learning of directed acyclic graphs. However, its application to real-world datasets remains restricted due to the ubiquity of latent confounders and the requirement to learn maximal ancestral graphs (MAGs). To date, existing differentiable MAG learning algorithms have been limited to small datasets and failed to scale to larger ones (e.g., with more than 50 variables). The key insight in this paper is that the causal skeleton, which is the undirected version of the causal graph, has potential for improving accuracy and reducing the search space of the optimization procedure, thereby enhancing the performance of differentiable causal discovery. Therefore, we seek to address a two-fold challenge to harness the potential of the causal skeleton for differentiable causal discovery in the presence of latent confounders: (1) scalable and accurate estimation of skeleton and (2) universal integration of skeleton estimation with differentiable causal discovery. To this end, we propose SPOT (Skeleton Posterior-guided OpTimization), a two-phase framework that harnesses skeleton posterior for differentiable causal discovery in the presence of latent confounders. On the contrary to a ``point-estimation'', SPOT seeks to estimate the posterior distribution of skeletons given the dataset. It first formulates the posterior inference as an instance of amortized inference problem and concretizes it with a supervised causal learning (SCL)-enabled solution to estimate the skeleton posterior. To incorporate the skeleton posterior with differentiable causal discovery, SPOT then features a skeleton posterior-guided stochastic optimization procedure to guide the optimization of MAGs. [abridged due to length limit]
Related papers
- A Meta-Learning Approach to Bayesian Causal Discovery [15.017003416900836]
Uncertainty over causal structures, such as those obtained from a Bayesian posterior, is often necessary for downstream tasks.
Recent works have used meta-learning to view the problem of estimating the maximum a-posteriori causal graph as supervised learning.
We propose a Bayesian meta learning model that allows for sampling causal structures from the posterior and encodes these key properties.
arXiv Detail & Related papers (2024-12-21T10:52:56Z) - Spatial-Temporal Decoupling Contrastive Learning for Skeleton-based
Human Action Recognition [10.403751563214113]
STD-CL is a framework to obtain discriminative and semantically distinct representations from the sequences.
STD-CL achieves solid improvements on NTU60, NTU120, and NW-UCLA benchmarks.
arXiv Detail & Related papers (2023-12-23T02:54:41Z) - One-Shot Action Recognition via Multi-Scale Spatial-Temporal Skeleton
Matching [77.6989219290789]
One-shot skeleton action recognition aims to learn a skeleton action recognition model with a single training sample.
This paper presents a novel one-shot skeleton action recognition technique that handles skeleton action recognition via multi-scale spatial-temporal feature matching.
arXiv Detail & Related papers (2023-07-14T11:52:10Z) - Contrastive Learning from Spatio-Temporal Mixed Skeleton Sequences for
Self-Supervised Skeleton-Based Action Recognition [21.546894064451898]
We show that directly extending contrastive pairs based on normal augmentations brings limited returns in terms of performance.
We propose SkeleMixCLR: a contrastive learning framework with atemporal skeleton mixing augmentation (SkeleMix) to complement current contrastive learning approaches.
arXiv Detail & Related papers (2022-07-07T03:18:09Z) - Large-Scale Differentiable Causal Discovery of Factor Graphs [3.8015092217142223]
We introduce the notion of factor directed acyclic graphs (f-DAGs) as a way to the search space to non-linear low-rank causal interaction models.
We propose a scalable implementation of f-DAG constrained causal discovery for high-dimensional interventional data.
arXiv Detail & Related papers (2022-06-15T21:28:36Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
We develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations.
MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization framework.
We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
arXiv Detail & Related papers (2022-05-27T09:59:46Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.