m-QMDS codes over mixed alphabets via orthogonal arrays
- URL: http://arxiv.org/abs/2406.10629v1
- Date: Sat, 15 Jun 2024 13:23:17 GMT
- Title: m-QMDS codes over mixed alphabets via orthogonal arrays
- Authors: Shanqi Pang, Mengqian Chen, Rong Yan, Yan Zhu,
- Abstract summary: We propose a general method to construct $m$-QMDS codes over mixed alphabets.
The codes have more flexibility in the choice of parameters, such as the alphabet sizes, length and dimension of the encoding state.
- Score: 1.5916374873447232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The construction of quantum error-correcting codes (QECCs) with good parameters is a hot topic in the area of quantum information and quantum computing. Quantum maximum distance separable (QMDS) codes are optimal because the minimum distance cannot be improved for a given length and code size. The QMDS codes over mixed alphabets are rarely known even if the existence and construction of QECCs over mixed alphabets with minimum distance more than or equal to three are still an open question. In this paper, we define an $m$-QMDS code over mixed alphabets, which is a generalization of QMDS codes. We establish a relation between $m$-QMDS codes over mixed alphabets and asymmetrical orthogonal arrays (OAs) with orthogonal partitions. Using this relation, we propose a general method to construct $m$-QMDS codes. As applications of this method, numerous infinite families of $m$-QMDS codes over mixed alphabets can be constructed explicitly. Compared with existing codes, the constructed codes have more flexibility in the choice of parameters, such as the alphabet sizes, length and dimension of the encoding state.
Related papers
- Entanglement-Assisted Concatenated Quantum Codes: Parameters and Asymptotic Performance [33.75746203222285]
Entanglement-assistedd quantum codes (EACQCs) are constructed by concatenating two entanglement-assisted quantum error-correcting codes (EAQECCs)
By selecting the inner and outer component codes carefully, it is able to construct state-of-the-art EACQCs with parameters better than previous quantum codes.
arXiv Detail & Related papers (2025-01-09T02:22:21Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Class of codes correcting absorptions and emissions [59.90381090395222]
We construct a family of quantum codes that protect against all emission, absorption, dephasing, and raising/lowering errors up to an arbitrary fixed order.
We derive simplified error correction conditions for a general AE code and show that any permutation-invariant code that corrects $le t$ errors can be mapped to an AE code.
arXiv Detail & Related papers (2024-10-04T16:14:03Z) - Asymptotically Good Quantum Codes with Transversal Non-Clifford Gates [23.22566380210149]
We construct quantum codes that support $CCZ$ gates over qudits of arbitrary prime power dimension $q$.
The only previously known construction with such linear dimension and distance required a growing alphabet size $q$.
arXiv Detail & Related papers (2024-08-17T16:54:51Z) - Quotient Space Quantum Codes [0.0]
In this paper, I establish the quotient space codes to construct quantum codes.
These new codes unify additive codes and codeword stabilized codes and can transmit classical codewords.
I also present new bounds for quantum codes and provide a simple proof of the quantum Singleton bound.
arXiv Detail & Related papers (2023-11-13T12:03:59Z) - Near MDS and near quantum MDS codes via orthogonal arrays [3.5557219875516646]
We construct a lot of NMDS, $m$-MDS and almost extremal NMDS codes.
We establish a relation between asymmetrical OAs and quantum error correcting codes (QECCs) over mixed alphabets.
arXiv Detail & Related papers (2023-08-01T09:36:48Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Sparsifying Parity-Check Matrices [60.28601275219819]
We consider the problem of minimizing the number of one-entries in parity-check matrices.
In the maximum-likelihood (ML) decoding method, the number of ones in PCMs is directly related to the time required to decode messages.
We propose a simple matrix row manipulation which alters the PCM, but not the code itself.
arXiv Detail & Related papers (2020-05-08T05:51:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.