Quantifying Generative Media Bias with a Corpus of Real-world and Generated News Articles
- URL: http://arxiv.org/abs/2406.10773v1
- Date: Sun, 16 Jun 2024 01:32:04 GMT
- Title: Quantifying Generative Media Bias with a Corpus of Real-world and Generated News Articles
- Authors: Filip Trhlik, Pontus Stenetorp,
- Abstract summary: Large language models (LLMs) are increasingly being utilised across a range of tasks and domains.
This study focuses on political bias, detecting it using both supervised models and LLMs.
For the first time within the journalistic domain, this study outlines a framework for quantifiable experiments.
- Score: 12.356251871670011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are increasingly being utilised across a range of tasks and domains, with a burgeoning interest in their application within the field of journalism. This trend raises concerns due to our limited understanding of LLM behaviour in this domain, especially with respect to political bias. Existing studies predominantly focus on LLMs undertaking political questionnaires, which offers only limited insights into their biases and operational nuances. To address this gap, our study establishes a new curated dataset that contains 2,100 human-written articles and utilises their descriptions to generate 56,700 synthetic articles using nine LLMs. This enables us to analyse shifts in properties between human-authored and machine-generated articles, with this study focusing on political bias, detecting it using both supervised models and LLMs. Our findings reveal significant disparities between base and instruction-tuned LLMs, with instruction-tuned models exhibiting consistent political bias. Furthermore, we are able to study how LLMs behave as classifiers, observing their display of political bias even in this role. Overall, for the first time within the journalistic domain, this study outlines a framework and provides a structured dataset for quantifiable experiments, serving as a foundation for further research into LLM political bias and its implications.
Related papers
- The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - Transforming Scholarly Landscapes: Influence of Large Language Models on Academic Fields beyond Computer Science [77.31665252336157]
Large Language Models (LLMs) have ushered in a transformative era in Natural Language Processing (NLP)
This work empirically examines the influence and use of LLMs in fields beyond NLP.
arXiv Detail & Related papers (2024-09-29T01:32:35Z) - A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions [0.0]
Large Language Models (LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities.
Their widespread deployment has brought to light significant concerns regarding biases embedded within these models.
This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases.
arXiv Detail & Related papers (2024-09-24T19:50:38Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
Large Language Models (LLM) are prone to inheriting and amplifying societal biases.
LLM bias can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities.
arXiv Detail & Related papers (2024-08-20T23:54:26Z) - Interpreting Bias in Large Language Models: A Feature-Based Approach [0.0]
Large Language Models (LLMs) have showcased remarkable performance across various natural language processing (NLP) tasks.
This paper investigates the propagation of biases within LLMs through a novel feature-based analytical approach.
arXiv Detail & Related papers (2024-06-18T07:28:15Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
We investigate the presence and nature of bias within Large Language Models (LLMs)
We probe whether LLMs exhibit biases, particularly in political bias prediction and text continuation tasks.
We propose debiasing strategies, including prompt engineering and model fine-tuning.
arXiv Detail & Related papers (2024-03-22T00:59:48Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
Large-Language-Models (LLMs) are deployed in a wide range of applications, and their response has an increasing social impact.
We show that value bias is strong in LLMs across different categories, similar to the results found in human studies.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.