論文の概要: Towards Understanding Jailbreak Attacks in LLMs: A Representation Space Analysis
- arxiv url: http://arxiv.org/abs/2406.10794v1
- Date: Sun, 16 Jun 2024 03:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 20:51:13.773073
- Title: Towards Understanding Jailbreak Attacks in LLMs: A Representation Space Analysis
- Title(参考訳): LLMにおける脱獄事件の理解に向けて--表現空間分析
- Authors: Yuping Lin, Pengfei He, Han Xu, Yue Xing, Makoto Yamada, Hui Liu, Jiliang Tang,
- Abstract要約: 大規模言語モデル(LLM)は、有害な内容を出力するためにLLMを誤解させるジェイルブレーキング(jailbreaking)と呼ばれるタイプの攻撃を受けやすい。
本稿では, LLMの表現空間における有害かつ無害なプロンプトの挙動を考察し, ジェイルブレイク攻撃の本質的特性について検討する。
- 参考スコア(独自算出の注目度): 47.81417828399084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are susceptible to a type of attack known as jailbreaking, which misleads LLMs to output harmful contents. Although there are diverse jailbreak attack strategies, there is no unified understanding on why some methods succeed and others fail. This paper explores the behavior of harmful and harmless prompts in the LLM's representation space to investigate the intrinsic properties of successful jailbreak attacks. We hypothesize that successful attacks share some similar properties: They are effective in moving the representation of the harmful prompt towards the direction to the harmless prompts. We leverage hidden representations into the objective of existing jailbreak attacks to move the attacks along the acceptance direction, and conduct experiments to validate the above hypothesis using the proposed objective. We hope this study provides new insights into understanding how LLMs understand harmfulness information.
- Abstract(参考訳): 大規模言語モデル(LLM)は、有害な内容を出力するためにLLMを誤解させるジェイルブレーキング(jailbreaking)と呼ばれるタイプの攻撃を受けやすい。
多様なジェイルブレイク攻撃戦略があるが、なぜある方法が成功し、他の方法が失敗するのかについての統一的な理解はない。
本稿では, LLMの表現空間における有害かつ無害なプロンプトの挙動を考察し, ジェイルブレイク攻撃の本質的特性について検討する。
彼らは有害なプロンプトの表現を有害なプロンプトから無害なプロンプトへと移動させるのに効果的である。
我々は、既存のジェイルブレイク攻撃の目的に隠された表現を活用して、受け入れ方向に沿って攻撃を移動させ、提案した目的を用いて上記の仮説を検証する実験を行う。
この研究は、LSMが有害情報をどのように理解するかを理解するための新たな洞察を与えてくれることを願っている。
関連論文リスト
- Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Enhancing Jailbreak Attack Against Large Language Models through Silent Tokens [22.24239212756129]
既存のジェイルブレイク攻撃では、人間の専門家か、複雑なアルゴリズムを使ってプロンプトを作らなければならない。
eosトークンのみを活用する単純な攻撃であるBOOSTを導入する。
LLMがジェイルブレイク攻撃に対して脆弱であることが判明し、強力な安全アライメントアプローチの開発が動機となった。
論文 参考訳(メタデータ) (2024-05-31T07:41:03Z) - LLMs Can Defend Themselves Against Jailbreaking in a Practical Manner: A
Vision Paper [16.078682415975337]
Jailbreakingは、既成の大規模言語モデル(LLM)に配置された安全アライメントをバイパスする、新たな敵攻撃である。
本稿では,SELFDEFENDと呼ばれる軽量で実用的な防御手法を提案する。
jailbreakプロンプトが最小限の遅延と、通常のユーザプロンプトが無視できる遅延で、既存のjailbreak攻撃を防げます。
論文 参考訳(メタデータ) (2024-02-24T05:34:43Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
大規模言語モデル(LLM)に対する敵対的攻撃は、有害なステートメントを作るためにモデルを「ジェイルブレイク」することができることが示されている。
LLMに対する敵対的攻撃のスペクトルは単なるジェイルブレイクよりもはるかに大きいと我々は主張する。
論文 参考訳(メタデータ) (2024-02-21T18:59:13Z) - Leveraging the Context through Multi-Round Interactions for Jailbreaking Attacks [55.603893267803265]
大規模言語モデル(LLM)は、脱獄攻撃の影響を受けやすい。
脱獄攻撃は、攻撃クエリを微調整することで有害な情報を抽出することを目的としている。
我々は、コンテキストインタラクションアタックと呼ばれる新しい攻撃形式に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-14T13:45:19Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
4つのカテゴリから13の最先端ジェイルブレイク法,16の違反カテゴリから160の質問,6つの人気のあるLDMについて検討した。
実験の結果, 最適化されたジェイルブレイクは高い攻撃成功率を確実に達成することが示された。
攻撃性能と効率のトレードオフについて論じるとともに、脱獄プロンプトの転送性は依然として維持可能であることを示す。
論文 参考訳(メタデータ) (2024-02-08T13:42:50Z) - Analyzing the Inherent Response Tendency of LLMs: Real-World
Instructions-Driven Jailbreak [26.741029482196534]
大規模言語モデル(LLM)が悪意ある指示に直面すると有害な応答を発生させる現象である。
本稿では,LDMのポテンシャルを増幅することでセキュリティ機構をバイパスし,肯定応答を生成する新しい自動ジェイルブレイク手法RADIALを提案する。
提案手法は,5つのオープンソースのLLMを用いて,英語の悪意のある命令に対する攻撃性能を良好に向上すると同時に,中国語の悪意のある命令に対するクロス言語攻撃の実行において,堅牢な攻撃性能を維持する。
論文 参考訳(メタデータ) (2023-12-07T08:29:58Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。