論文の概要: Ab Initio Structure Solutions from Nanocrystalline Powder Diffraction Data
- arxiv url: http://arxiv.org/abs/2406.10796v2
- Date: Thu, 31 Oct 2024 17:29:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:58:24.708072
- Title: Ab Initio Structure Solutions from Nanocrystalline Powder Diffraction Data
- Title(参考訳): ナノ結晶粉末回折データからのアブ初期構造解
- Authors: Gabe Guo, Tristan Saidi, Maxwell Terban, Michele Valsecchi, Simon JL Billinge, Hod Lipson,
- Abstract要約: 材料科学における大きな課題は、ナノメートルサイズの物体の構造を決定することである。
本稿では,45,229の既知構造に基づく拡散過程に基づく生成機械学習モデルを用いた新しい手法を提案する。
我々のモデルであるPXRDnetは、対称性と複雑さの異なる200の材料にまたがる10アングストロームのシミュレーションナノ結晶を解くことに成功した。
- 参考スコア(独自算出の注目度): 4.463003012243322
- License:
- Abstract: A major challenge in materials science is the determination of the structure of nanometer sized objects. Here we present a novel approach that uses a generative machine learning model based on diffusion processes that is trained on 45,229 known structures. The model factors both the measured diffraction pattern as well as relevant statistical priors on the unit cell of atomic cluster structures. Conditioned only on the chemical formula and the information-scarce finite-size broadened powder diffraction pattern, we find that our model, PXRDnet, can successfully solve simulated nanocrystals as small as 10 angstroms across 200 materials of varying symmetry and complexity, including structures from all seven crystal systems. We show that our model can successfully and verifiably determine structural candidates four out of five times, with average error among these candidates being only 7% (as measured by post-Rietveld refinement R-factor). Furthermore, PXRDnet is capable of solving structures from noisy diffraction patterns gathered in real-world experiments. We suggest that data driven approaches, bootstrapped from theoretical simulation, will ultimately provide a path towards determining the structure of previously unsolved nano-materials.
- Abstract(参考訳): 材料科学における大きな課題は、ナノメートルサイズの物体の構造を決定することである。
本稿では,45,229の既知構造に基づく拡散過程に基づく生成機械学習モデルを用いた新しい手法を提案する。
このモデルでは、測定された回折パターンと、原子クラスター構造の単位セルに関する関連する統計的先行の両方を決定づける。
化学式と情報スカース有限サイズ拡大粉体回折パターンでのみ条件を定め, 我々のモデルであるPXRDnetは, 7つの結晶系の構造を含む,様々な対称性と複雑さを持つ200の材料にまたがる10アングストロームのシミュレーションナノ結晶を解くことに成功した。
このモデルでは5回に4回, 平均誤差は7%に過ぎず, 構造的候補を5回に4回, 精度よく決定できることを示した。
さらに、PXRDnetは実世界の実験で収集されたノイズの多い回折パターンから構造を解くことができる。
理論シミュレーションから切り離されたデータ駆動アプローチは、最終的に未解決のナノ材料の構造を決定するための道を開くことを示唆する。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Towards End-to-End Structure Solutions from Information-Compromised
Diffraction Data via Generative Deep Learning [6.617784410952713]
機械学習(ML)とディープラーニング(DL)は、既に知られている構造を持つ大規模データベースから学習した事前知識を用いて、劣化した入力信号の情報を増大させるため、有望なアプローチである。
ここでは、この問題にエンドツーエンドで対処する堅牢だが汎用的なツールである、バラツキクエリベースのマルチブランチディープニューラルネットワークである、新しいMLアプローチを提案する。
このシステムは、既知の化学組成情報と部分的に知られている化学組成情報の両方で、目に見えない素材の真実と平均9.3.4%の類似性を達成している。
論文 参考訳(メタデータ) (2023-12-23T02:17:27Z) - Stoichiometry Representation Learning with Polymorphic Crystal
Structures [54.65985356122883]
確率論記述子は、構造的な情報を持たない特定の化合物を形成するために関係する要素間の比を明らかにすることができる。
本稿では,手軽に利用できる構造情報を利用して,確率論の確率的表現を学習するPolySRLを提案する。
論文 参考訳(メタデータ) (2023-11-17T20:34:28Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
計算化学において、結晶構造予測は最適化問題である。
この問題に対処する1つのアプローチは、密度汎関数理論(DFT)に基づいてシミュレータを構築し、続いてシミュレーションで探索を実行することである。
我々は,LCOM(最近の保守的客観モデル)と呼ばれる我々の手法が,構造予測の成功率の観点から,最も優れたアプローチと同等に機能することを示す。
論文 参考訳(メタデータ) (2023-10-16T04:35:44Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
本研究は, 化学安定性や化学組成など, 新しい結晶構造を創出することを目的としている。
提案手法の新規性は、結晶細胞の格子が固定されていないという事実にある。
対称性の制約を尊重し、計算上の優位性をもたらす多グラフ結晶表現が導入された。
論文 参考訳(メタデータ) (2023-10-16T02:53:24Z) - Equivariant Parameter Sharing for Porous Crystalline Materials [4.271235935891555]
既存の結晶特性予測法は、制限的すぎる制約を持つか、単位細胞間で対称性を組み込むのみである。
我々は、結晶の単位セルの対称性をアーキテクチャに組み込んだモデルを開発し、多孔質構造を明示的にモデル化する。
提案手法は, 既存の結晶特性予測法よりも優れた性能を示し, 対称性の包含によりより効率的なモデルが得られることを確認した。
論文 参考訳(メタデータ) (2023-04-04T08:33:13Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
我々は、高非線形電子回折パターンを定量的構造因子画像に変換するために、FCU-Netと呼ばれるディープニューラルネットワークを実装した。
結晶構造の異なる組み合わせを含む20,000以上のユニークな動的回折パターンを用いてFCU-Netを訓練した。
シミュレーションされた回折パターンライブラリ、FCU-Netの実装、訓練されたモデルの重み付けは、オープンソースリポジトリで自由に利用可能です。
論文 参考訳(メタデータ) (2022-02-01T03:53:39Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Crystal Structure Search with Random Relaxations Using Graph Networks [6.918493795610175]
物質の化学式に対する原子結晶構造の予測は、長年にわたる大きな挑戦である。
我々はLi-Si電池陽極材料のランダムな構造緩和のデータセットを構築した。
我々はランダム構造の緩和をシミュレートするためにグラフニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2020-12-05T01:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。