論文の概要: Crystal Structure Search with Random Relaxations Using Graph Networks
- arxiv url: http://arxiv.org/abs/2012.02920v2
- Date: Tue, 8 Dec 2020 02:01:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 11:58:32.148126
- Title: Crystal Structure Search with Random Relaxations Using Graph Networks
- Title(参考訳): グラフネットワークを用いたランダム緩和による結晶構造探索
- Authors: Gowoon Cheon, Lusann Yang, Kevin McCloskey, Evan J. Reed and Ekin D.
Cubuk
- Abstract要約: 物質の化学式に対する原子結晶構造の予測は、長年にわたる大きな挑戦である。
我々はLi-Si電池陽極材料のランダムな構造緩和のデータセットを構築した。
我々はランダム構造の緩和をシミュレートするためにグラフニューラルネットワークを訓練する。
- 参考スコア(独自算出の注目度): 6.918493795610175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Materials design enables technologies critical to humanity, including
combating climate change with solar cells and batteries. Many properties of a
material are determined by its atomic crystal structure. However, prediction of
the atomic crystal structure for a given material's chemical formula is a
long-standing grand challenge that remains a barrier in materials design. We
investigate a data-driven approach to accelerating ab initio random structure
search (AIRSS), a state-of-the-art method for crystal structure search. We
build a novel dataset of random structure relaxations of Li-Si battery anode
materials using high-throughput density functional theory calculations. We
train graph neural networks to simulate relaxations of random structures. Our
model is able to find an experimentally verified structure of Li15Si4 it was
not trained on, and has potential for orders of magnitude speedup over AIRSS
when searching large unit cells and searching over multiple chemical
stoichiometries. Surprisingly, we find that data augmentation of adding
Gaussian noise improves both the accuracy and out of domain generalization of
our models.
- Abstract(参考訳): 材料設計は、太陽電池や電池で気候変動に対処するなど、人類にとって重要な技術を可能にする。
材料の多くの性質は、その原子結晶構造によって決定される。
しかし、ある材料の化学式に対する原子結晶構造の予測は、材料設計における障壁として長く続く大きな課題である。
結晶構造探索のための最先端手法である ab initio random structure search (airss) の高速化のためのデータ駆動アプローチについて検討した。
高出力密度汎関数理論計算を用いたLi-Si電池陽極材料のランダムな構造緩和のデータセットを構築した。
我々はランダム構造の緩和をシミュレートするためにグラフニューラルネットワークを訓練する。
我々のモデルは、トレーニングされていないLi15Si4の実験的に検証された構造を見つけることができ、大きな単位細胞を探索し、複数の化学組織を探索する際に、AIRSSよりも桁違いに高速になる可能性がある。
驚くべきことに、ガウスノイズを付加するデータの拡張は、モデルの精度と領域の一般化の両方を改善します。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Unleashing the power of novel conditional generative approaches for new materials discovery [3.972733741872872]
結晶構造設計問題に対する2つの生成的アプローチを提案する。
1つは条件付き構造変化であり、最もエネルギー的に好ましい構造と全てのより安定なポリモルフィックの間のエネルギー差を利用する。
もう1つは条件付き構造の生成であり、最もエネルギー的に好ましい構造と、その全てのより安定したポリモルフィックの間のエネルギー差を利用する。
論文 参考訳(メタデータ) (2024-11-05T14:58:31Z) - Generative Hierarchical Materials Search [91.93125016916463]
結晶構造の制御可能な生成のための生成階層材料探索(GenMS)を提案する。
GenMSは(1)高レベル自然言語を入力とし、結晶に関する中間テキスト情報を生成する言語モデルからなる。
GenMSはまた、生成された結晶構造から特性(たとえば生成エネルギー)を予測するためにグラフニューラルネットワークを使用する。
論文 参考訳(メタデータ) (2024-09-10T17:51:28Z) - Ab Initio Structure Solutions from Nanocrystalline Powder Diffraction Data [4.463003012243322]
材料科学における大きな課題は、ナノメートルサイズの物体の構造を決定することである。
本稿では,45,229の既知構造に基づく拡散過程に基づく生成機械学習モデルを用いた新しい手法を提案する。
我々のモデルであるPXRDnetは、対称性と複雑さの異なる200の材料にまたがる10アングストロームのシミュレーションナノ結晶を解くことに成功した。
論文 参考訳(メタデータ) (2024-06-16T03:45:03Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
結晶構造から材料の物性を予測することは、材料科学の基本的な問題である。
結晶構造が無限に繰り返し、原子の周期的な配列であり、完全に連結された注意が無限に連結された注意をもたらすことを示す。
本稿では, 結晶構造に対する簡単なトランスフォーマーベースエンコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
計算化学において、結晶構造予測は最適化問題である。
この問題に対処する1つのアプローチは、密度汎関数理論(DFT)に基づいてシミュレータを構築し、続いてシミュレーションで探索を実行することである。
我々は,LCOM(最近の保守的客観モデル)と呼ばれる我々の手法が,構造予測の成功率の観点から,最も優れたアプローチと同等に機能することを示す。
論文 参考訳(メタデータ) (2023-10-16T04:35:44Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
本稿では,結晶構造の生成モデルであるCrystal-GFNを紹介する。
本稿では,MatBenchで学習した新しいプロキシ機械学習モデルにより予測された結晶構造の原子1個あたりの生成エネルギーを目的として利用する。
その結果、Crystal-GFNは低(中間-3.1 eV/原子)で生成エネルギーが予測される非常に多様な結晶をサンプリングできることが示された。
論文 参考訳(メタデータ) (2023-10-07T21:36:55Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
我々は、高非線形電子回折パターンを定量的構造因子画像に変換するために、FCU-Netと呼ばれるディープニューラルネットワークを実装した。
結晶構造の異なる組み合わせを含む20,000以上のユニークな動的回折パターンを用いてFCU-Netを訓練した。
シミュレーションされた回折パターンライブラリ、FCU-Netの実装、訓練されたモデルの重み付けは、オープンソースリポジトリで自由に利用可能です。
論文 参考訳(メタデータ) (2022-02-01T03:53:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。