論文の概要: An LLM-enhanced Multi-objective Evolutionary Search for Autonomous Driving Test Scenario Generation
- arxiv url: http://arxiv.org/abs/2406.10857v1
- Date: Sun, 16 Jun 2024 09:05:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 20:21:59.057219
- Title: An LLM-enhanced Multi-objective Evolutionary Search for Autonomous Driving Test Scenario Generation
- Title(参考訳): LLMによる自律走行テストシナリオ生成のための多目的進化探索
- Authors: Haoxiang Tian, Xingshuo Han, Guoquan Wu, Yuan Zhou, Shuo Li, Jun Wei, Dan Ye, Wei Wang, Tianwei Zhang,
- Abstract要約: 多様な安全クリティカルなテストシナリオを生成する方法は、自律運転システム(ADS)テストにおいて重要なタスクである。
本稿では,ALS テストのための LLM 拡張シナリオ生成手法 LEADE を提案する。
産業レベルのフルスタックADSプラットフォームであるBaidu Apollo上でLEADEを実装し評価する。
- 参考スコア(独自算出の注目度): 23.176669620953668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The safety of Autonomous Driving Systems (ADSs) is significantly important for the implementation of autonomous vehicles (AVs). Therefore, ADSs must be evaluated thoroughly before their release and deployment to the public. How to generate diverse safety-critical test scenarios is a key task for ADS testing. This paper proposes LEADE, an LLM-enhanced scenario generation approach for ADS testing, which adopts the LLM-enhanced adaptive evolutionary search to generate safety-critical and diverse test scenarios. LEADE leverages LLM's ability in program understanding to better comprehend the scenario generation task, which generates high-quality scenarios of the first generation. LEADE adopts an adaptive multi-objective genetic algorithm to search for diverse safety-critical scenarios. To guide the search away from the local optima, LEADE formulates the evolutionary search into a QA task, which leverages LLM's ability in quantitative reasoning to generate differential seed scenarios to break out of the local optimal solutions. We implement and evaluate LEADE on industrial-grade full-stack ADS platform, Baidu Apollo. Experimental results show that LEADE can effectively and efficiently generate safety-critical scenarios and expose 10 diverse safety violations of Apollo. It outperforms two state-of-the-art search-based ADS testing techniques by identifying 4 new types of safety-critical scenarios on the same roads.
- Abstract(参考訳): 自律走行システム(ADS)の安全性は、自律走行車(AV)の実装において極めて重要である。
したがって、ADSはリリースと一般公開前に徹底的に評価されなければならない。
多様な安全クリティカルなテストシナリオを生成する方法は、ADSテストの重要なタスクである。
本稿では,ALS テストのための LLM 拡張シナリオ生成手法である LEADE を提案する。
LEADEはLCMのプログラム理解能力を活用してシナリオ生成タスクをよりよく理解し、第1世代の高品質なシナリオを生成する。
LEADEは、多様な安全クリティカルなシナリオを探索するために、適応的な多目的遺伝的アルゴリズムを採用している。
LEADEは局所最適解から探索を導出するために、進化的探索をQAタスクに公式化し、定量推論におけるLLMの能力を活用して、局所最適解を分解する微分シードシナリオを生成する。
産業レベルのフルスタックADSプラットフォームであるBaidu Apollo上でLEADEを実装し評価する。
実験の結果、LEADEは安全クリティカルなシナリオを効果的に効率よく生成し、アポロの10の多様な安全違反を露呈できることがわかった。
最先端の検索ベースのADSテストでは、同じ道路上で4つの新しいタイプの安全クリティカルシナリオを特定することで、2つのADSテスト手法を上回ります。
関連論文リスト
- GOOSE: Goal-Conditioned Reinforcement Learning for Safety-Critical Scenario Generation [0.14999444543328289]
ゴール条件付きシナリオ生成(Goal-conditioned Scenario Generation、GOOSE)は、ゴール条件付き強化学習(RL)アプローチで、安全クリティカルなシナリオを自動的に生成する。
安全クリティカルな事象につながるシナリオを生成する上でのGOOSEの有効性を実証する。
論文 参考訳(メタデータ) (2024-06-06T08:59:08Z) - Risk Scenario Generation for Autonomous Driving Systems based on Causal Bayesian Networks [4.172581773205466]
自律運転システム(ADS)におけるシナリオ生成のためのCausal Bayesian Networks(CBN)の利用に向けた新しいパラダイムシフトを提案する。
CBNはメリーランドの事故データを用いて構築され、検証されており、自律運転行動に影響を与える無数の要因について深い洞察を提供する。
CARLAシミュレータを用いて,ADSのエンドツーエンドテストフレームワークを構築した。
論文 参考訳(メタデータ) (2024-05-25T05:26:55Z) - ALI-Agent: Assessing LLMs' Alignment with Human Values via Agent-based Evaluation [48.54271457765236]
大規模言語モデル(LLM)は、人間の価値観と不一致した場合、意図しない、有害なコンテンツも引き出すことができる。
現在の評価ベンチマークでは、LLMが人的価値とどの程度うまく一致しているかを評価するために、専門家が設計した文脈シナリオが採用されている。
本研究では, LLM エージェントの自律的能力を活用し, 奥行き及び適応的アライメント評価を行う評価フレームワーク ALI-Agent を提案する。
論文 参考訳(メタデータ) (2024-05-23T02:57:42Z) - PAFOT: A Position-Based Approach for Finding Optimal Tests of Autonomous Vehicles [4.243926243206826]
本稿では位置に基づくアプローチテストフレームワークであるPAFOTを提案する。
PAFOTは、自動走行システムの安全違反を明らかにするために、敵の運転シナリオを生成する。
PAFOTはADSをクラッシュさせる安全クリティカルなシナリオを効果的に生成し、短いシミュレーション時間で衝突を見つけることができることを示す実験である。
論文 参考訳(メタデータ) (2024-05-06T10:04:40Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
大規模言語モデル(LLM)は、様々な領域において可能性を示しているが、脆弱性のローカライゼーションにおけるその有効性は未解明のままである。
本調査では,ChatGPTや各種オープンソースモデルなど,コード解析に適した10以上のLLMを対象とする。
ゼロショット学習,ワンショット学習,識別的微調整,生成的微調整の4つのパラダイムを用いて,これらのLCMの有効性を検討する。
論文 参考訳(メタデータ) (2024-03-30T08:42:10Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - Near-optimal Policy Identification in Active Reinforcement Learning [84.27592560211909]
AE-LSVI はカーネル化された最小二乗値 RL (LSVI) アルゴリズムの新しい変種であり、楽観主義と悲観主義を組み合わせて活発な探索を行う。
AE-LSVIは初期状態に対するロバスト性が必要な場合、様々な環境で他のアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-19T14:46:57Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。