論文の概要: All Things Considered: Detecting Partisan Events from News Media with
Cross-Article Comparison
- arxiv url: http://arxiv.org/abs/2310.18827v1
- Date: Sat, 28 Oct 2023 21:53:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 16:20:03.128018
- Title: All Things Considered: Detecting Partisan Events from News Media with
Cross-Article Comparison
- Title(参考訳): あらゆることを考える:クロスページ比較によるニュースメディアからのパルチザンイベントの検出
- Authors: Yujian Liu, Xinliang Frederick Zhang, Kaijian Zou, Ruihong Huang, Nick
Beauchamp, Lu Wang
- Abstract要約: 我々は,ニュース記事のイデオロギーを予測するための潜在変数ベースのフレームワークを開発する。
以上の結果から,主観性や非党派的傾向が強い主流メディアにおいても,メディアバイアスのレベルが高いことが明らかとなった。
- 参考スコア(独自算出の注目度): 19.328425822355378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Public opinion is shaped by the information news media provide, and that
information in turn may be shaped by the ideological preferences of media
outlets. But while much attention has been devoted to media bias via overt
ideological language or topic selection, a more unobtrusive way in which the
media shape opinion is via the strategic inclusion or omission of partisan
events that may support one side or the other. We develop a latent
variable-based framework to predict the ideology of news articles by comparing
multiple articles on the same story and identifying partisan events whose
inclusion or omission reveals ideology. Our experiments first validate the
existence of partisan event selection, and then show that article alignment and
cross-document comparison detect partisan events and article ideology better
than competitive baselines. Our results reveal the high-level form of media
bias, which is present even among mainstream media with strong norms of
objectivity and nonpartisanship. Our codebase and dataset are available at
https://github.com/launchnlp/ATC.
- Abstract(参考訳): 世論はニュースメディアが提供する情報によって形成され、その情報はメディアのイデオロギー的な好みによって形作られる可能性がある。
しかし、過度なイデオロギー言語やトピック選択を通じてメディアバイアスに多くの注意が向けられている一方で、メディア形態の意見を戦略的に包含するか、あるいは一方を支持するパルチザンイベントを省略するより控えめな方法である。
我々は,同一記事に関する複数の記事を比較し,イデオロギーを包含または省略したパルチザンイベントを識別することにより,ニュース記事のイデオロギーを予測する潜在変数ベースのフレームワークを開発した。
本実験はまず, パルチザンイベント選択の存在を検証し, 記事アライメントとクロスドキュメント比較が, コンペティションベースラインよりもパルチザンイベントや記事イデオロギーを検出することを示す。
以上の結果から,主観性や非党派的傾向が強い主流メディアにおいても,メディアバイアスのレベルが高いことが明らかとなった。
私たちのコードベースとデータセットはhttps://github.com/launchnlp/atcで利用可能です。
関連論文リスト
- DocNet: Semantic Structure in Inductive Bias Detection Models [0.4779196219827508]
本稿では,文書におけるバイアス検出の見過ごされがちな側面として,ニュース記事の意味的構造について考察する。
本稿では,新しい,インダクティブで低リソースなドキュメント埋め込みとバイアス検出モデルであるDocNetを提案する。
また、文書レベルのグラフ埋め込みに代表される、対立するパルチザン側からのニュース記事のセマンティック構造が顕著に類似していることも示している。
論文 参考訳(メタデータ) (2024-06-16T14:51:12Z) - Crossing the Aisle: Unveiling Partisan and Counter-Partisan Events in
News Reporting [7.8192232188516115]
我々は,メディアがニュース報道のバランスを保ち,イベント包摂や欠席を通じて消費者に影響を与える程度について検討する。
まず、パルチザンと反パルチザンの両方を検知するタスクを紹介する。
以上の結果から,ニュースが微妙に意見を形成する方法と,大規模言語モデルの必要性の両方が浮かび上がっている。
論文 参考訳(メタデータ) (2023-10-28T17:50:13Z) - Understanding Divergent Framing of the Supreme Court Controversies:
Social Media vs. News Outlets [56.67097829383139]
我々は、米国最高裁判所の一連の判決に関して、ソーシャルメディアや伝統的なメディアのフレーミングにおける微妙な区別に焦点を当てている。
メディアが肯定的な行動や中絶の権利を扱い、学生ローンの話題はより深いコンセンサスを示す傾向にある。
論文 参考訳(メタデータ) (2023-09-18T06:40:21Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
われわれはまず、超党派ニュースタイトル検出のための新しいデータセットを開発するために、人間の誘導する機械学習フレームワークを採用する。
全体的に右派メディアは比例的に超党派的なタイトルを使う傾向にある。
我々は、外国問題、政治システム、ニュースタイトルにおける過党主義を示唆する社会問題を含む3つの主要なトピックを識別する。
論文 参考訳(メタデータ) (2023-01-16T05:56:58Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Newsalyze: Enabling News Consumers to Understand Media Bias [7.652448987187803]
フェイクニュース」の時代には、ニュース記事のスラントと信頼性を知ることが極めて重要である。
我々はNewsalyzeを紹介します。Newsalyzeは、言葉の選択とラベル付け(WCL)という、微妙で強力なメディアバイアスに焦点をあてたバイアス対応ニュースリーダーです。
WCLバイアスは、ニュースで報告された「フリーダム・ファイター」対「テロリスト」の評価を変えることができる。
論文 参考訳(メタデータ) (2021-05-20T11:20:37Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
本論文では, 偏見の自動検出だけでなく, 政治的偏見や不公平さが言語的にどのように表現されるかについても検討する。
我々は,adfontesmedia.comから派生したラベル付き6964ニュース記事の新しいコーパスを活用し,バイアス評価のためのニューラルモデルを開発した。
論文 参考訳(メタデータ) (2020-10-20T22:25:00Z) - Political audience diversity and news reliability in algorithmic ranking [54.23273310155137]
本稿では,ウェブサイトのオーディエンスの政治的多様性を質の指標として活用することを提案する。
ドメインの専門家によるニュースソースの信頼性評価と6,890人の米国市民の多様なサンプルによるWebブラウジングデータを用いて、より極端な、政治的に多様性の低いWebサイトが、ジャーナリストの基準を低くしていることを示す。
論文 参考訳(メタデータ) (2020-07-16T02:13:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。