Towards Lifelong Dialogue Agents via Timeline-based Memory Management
- URL: http://arxiv.org/abs/2406.10996v3
- Date: Wed, 29 Jan 2025 15:34:02 GMT
- Title: Towards Lifelong Dialogue Agents via Timeline-based Memory Management
- Authors: Kai Tzu-iunn Ong, Namyoung Kim, Minju Gwak, Hyungjoo Chae, Taeyoon Kwon, Yohan Jo, Seung-won Hwang, Dongha Lee, Jinyoung Yeo,
- Abstract summary: We present THEANINE, a framework for lifelong dialogue agents.<n> THEANINE discards memory removal and manages large-scale memories by linking them based on their temporal and cause-effect relation.<n>Along with THEANINE, we introduce TeaFarm, a counterfactual-driven evaluation scheme.
- Score: 26.95907827895548
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To achieve lifelong human-agent interaction, dialogue agents need to constantly memorize perceived information and properly retrieve it for response generation (RG). While prior studies focus on getting rid of outdated memories to improve retrieval quality, we argue that such memories provide rich, important contextual cues for RG (e.g., changes in user behaviors) in long-term conversations. We present THEANINE, a framework for LLM-based lifelong dialogue agents. THEANINE discards memory removal and manages large-scale memories by linking them based on their temporal and cause-effect relation. Enabled by this linking structure, THEANINE augments RG with memory timelines - series of memories representing the evolution or causality of relevant past events. Along with THEANINE, we introduce TeaFarm, a counterfactual-driven evaluation scheme, addressing the limitation of G-Eval and human efforts when assessing agent performance in integrating past memories into RG. A supplementary video for THEANINE and data for TeaFarm are at https://huggingface.co/spaces/ResearcherScholar/Theanine.
Related papers
- In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents [70.12342024019044]
Large Language Models (LLMs) have made significant progress in open-ended dialogue, yet their inability to retain and retrieve relevant information limits their effectiveness.
We propose Reflective Memory Management (RMM), a novel mechanism for long-term dialogue agents, integrating forward- and backward-looking reflections.
RMM shows more than 10% accuracy improvement over the baseline without memory management on the LongMemEval dataset.
arXiv Detail & Related papers (2025-03-11T04:15:52Z) - From RAG to Memory: Non-Parametric Continual Learning for Large Language Models [6.380729797938521]
retrieval-augmented generation (RAG) has become the dominant way to introduce new information.
Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some gaps, namely sense-making and associativity.
We propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks.
arXiv Detail & Related papers (2025-02-20T18:26:02Z) - Integrating Temporal Representations for Dynamic Memory Retrieval and Management in Large Language Models [8.943924354248622]
We propose SynapticRAG, a novel approach integrating synaptic dynamics into Retrieval-Augmented Generation (RAG)
Our approach advances context-aware dialogue AI systems by enhancing long-term context maintenance and specific information extraction from conversations.
arXiv Detail & Related papers (2024-10-17T13:51:03Z) - LongMemEval: Benchmarking Chat Assistants on Long-Term Interactive Memory [68.97819665784442]
This paper introduces LongMemEval, a benchmark designed to evaluate five core long-term memory abilities of chat assistants.
LongMemEval presents a significant challenge to existing long-term memory systems.
We present a unified framework that breaks down the long-term memory design into four design choices.
arXiv Detail & Related papers (2024-10-14T17:59:44Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
We introduce a model-agnostic framework, the Long-term Dialogue Agent (LD-Agent)
It incorporates three independently tunable modules dedicated to event perception, persona extraction, and response generation.
The effectiveness, generality, and cross-domain capabilities of LD-Agent are empirically demonstrated.
arXiv Detail & Related papers (2024-06-09T21:58:32Z) - Ever-Evolving Memory by Blending and Refining the Past [30.63352929849842]
CREEM is a novel memory system for long-term conversation.
It seamlessly connects past and present information, while also possessing the ability to forget obstructive information.
arXiv Detail & Related papers (2024-03-03T08:12:59Z) - Evaluating Very Long-Term Conversational Memory of LLM Agents [95.84027826745609]
We introduce a machine-human pipeline to generate high-quality, very long-term dialogues.
We equip each agent with the capability of sharing and reacting to images.
The generated conversations are verified and edited by human annotators for long-range consistency.
arXiv Detail & Related papers (2024-02-27T18:42:31Z) - Think-in-Memory: Recalling and Post-thinking Enable LLMs with Long-Term
Memory [24.464945401037056]
We propose TiM (Think-in-Memory) that enables Large Language Models to maintain an evolved memory for storing historical thoughts.
We conduct qualitative and quantitative experiments on real-world and simulated dialogues covering a wide range of topics.
arXiv Detail & Related papers (2023-11-15T06:08:35Z) - Recursively Summarizing Enables Long-Term Dialogue Memory in Large
Language Models [75.98775135321355]
Given a long conversation, large language models (LLMs) fail to recall past information and tend to generate inconsistent responses.
We propose to generate summaries/ memory using large language models (LLMs) to enhance long-term memory ability.
arXiv Detail & Related papers (2023-08-29T04:59:53Z) - MemoryBank: Enhancing Large Language Models with Long-Term Memory [7.654404043517219]
We propose MemoryBank, a novel memory mechanism tailored for Large Language Models.
MemoryBank enables the models to summon relevant memories, continually evolve through continuous memory updates, comprehend, and adapt to a user personality by synthesizing information from past interactions.
arXiv Detail & Related papers (2023-05-17T14:40:29Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.
We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z) - Learning to Rehearse in Long Sequence Memorization [107.14601197043308]
Existing reasoning tasks often have an important assumption that the input contents can be always accessed while reasoning.
Memory augmented neural networks introduce a human-like write-read memory to compress and memorize the long input sequence in one pass.
But they have two serious drawbacks: 1) they continually update the memory from current information and inevitably forget the early contents; 2) they do not distinguish what information is important and treat all contents equally.
We propose the Rehearsal Memory to enhance long-sequence memorization by self-supervised rehearsal with a history sampler.
arXiv Detail & Related papers (2021-06-02T11:58:30Z) - Towards mental time travel: a hierarchical memory for reinforcement
learning agents [9.808027857786781]
Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks.
We propose a Hierarchical Transformer Memory (HTM) which helps agents to remember the past in detail.
Agents with HTM can extrapolate to task sequences an order of magnitude longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes.
arXiv Detail & Related papers (2021-05-28T18:12:28Z) - ORD: Object Relationship Discovery for Visual Dialogue Generation [60.471670447176656]
We propose an object relationship discovery (ORD) framework to preserve the object interactions for visual dialogue generation.
A hierarchical graph convolutional network (HierGCN) is proposed to retain the object nodes and neighbour relationships locally, and then refines the object-object connections globally.
Experiments have proved that the proposed method can significantly improve the quality of dialogue by utilising the contextual information of visual relationships.
arXiv Detail & Related papers (2020-06-15T12:25:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.