From RAG to Memory: Non-Parametric Continual Learning for Large Language Models
- URL: http://arxiv.org/abs/2502.14802v1
- Date: Thu, 20 Feb 2025 18:26:02 GMT
- Title: From RAG to Memory: Non-Parametric Continual Learning for Large Language Models
- Authors: Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, Yu Su,
- Abstract summary: retrieval-augmented generation (RAG) has become the dominant way to introduce new information.
Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some gaps, namely sense-making and associativity.
We propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks.
- Score: 6.380729797938521
- License:
- Abstract: Our ability to continuously acquire, organize, and leverage knowledge is a key feature of human intelligence that AI systems must approximate to unlock their full potential. Given the challenges in continual learning with large language models (LLMs), retrieval-augmented generation (RAG) has become the dominant way to introduce new information. However, its reliance on vector retrieval hinders its ability to mimic the dynamic and interconnected nature of human long-term memory. Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some of these gaps, namely sense-making and associativity. However, their performance on more basic factual memory tasks drops considerably below standard RAG. We address this unintended deterioration and propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks. HippoRAG 2 builds upon the Personalized PageRank algorithm used in HippoRAG and enhances it with deeper passage integration and more effective online use of an LLM. This combination pushes this RAG system closer to the effectiveness of human long-term memory, achieving a 7% improvement in associative memory tasks over the state-of-the-art embedding model while also exhibiting superior factual knowledge and sense-making memory capabilities. This work paves the way for non-parametric continual learning for LLMs. Our code and data will be released at https://github.com/OSU-NLP-Group/HippoRAG.
Related papers
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation [69.01029651113386]
Embodied-RAG is a framework that enhances the model of an embodied agent with a non-parametric memory system.
At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail.
We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 250 explanation and navigation queries.
arXiv Detail & Related papers (2024-09-26T21:44:11Z) - MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery [24.38640001674072]
Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases.
Existing RAG systems are primarily effective for straightforward question-answering tasks.
We propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory.
arXiv Detail & Related papers (2024-09-09T13:20:31Z) - RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation [54.707460684650584]
Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention.
Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG)
RAGLAB is a modular and research-oriented open-source library that reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms.
arXiv Detail & Related papers (2024-08-21T07:20:48Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Holistic Memory Diversification for Incremental Learning in Growing Graphs [16.483780704430405]
The goal is to continually train a graph model to handle new tasks while retaining its inference ability on previous tasks.
Existing methods usually neglect the importance of memory diversity, limiting in effectively selecting high-quality memory from previous tasks.
We introduce a novel holistic Diversified Memory Selection and Generation framework for incremental learning in graphs.
arXiv Detail & Related papers (2024-06-11T16:18:15Z) - HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models [24.529215038221956]
We introduce HippoRAG, a novel retrieval framework inspired by the hippocampal indexing theory of human long-term memory.
We show that our method outperforms the state-of-the-art methods remarkably, by up to 20%.
Our method can tackle new types of scenarios that are out of reach of existing methods.
arXiv Detail & Related papers (2024-05-23T17:47:55Z) - RecallM: An Adaptable Memory Mechanism with Temporal Understanding for
Large Language Models [3.9770715318303353]
RecallM is a novel architecture for providing Large Language Models with an adaptable and updatable long-term memory mechanism.
We show that RecallM is four times more effective than using a vector database for updating knowledge previously stored in long-term memory.
We also demonstrate that RecallM shows competitive performance on general question-answering and in-context learning tasks.
arXiv Detail & Related papers (2023-07-06T02:51:54Z) - Memory-Guided Semantic Learning Network for Temporal Sentence Grounding [55.31041933103645]
We propose a memory-augmented network that learns and memorizes the rarely appeared content in TSG tasks.
MGSL-Net consists of three main parts: a cross-modal inter-action module, a memory augmentation module, and a heterogeneous attention module.
arXiv Detail & Related papers (2022-01-03T02:32:06Z) - Schematic Memory Persistence and Transience for Efficient and Robust
Continual Learning [8.030924531643532]
Continual learning is considered a promising step towards next-generation Artificial Intelligence (AI)
It is still quite primitive, with existing works focusing primarily on avoiding (catastrophic) forgetting.
We propose a novel framework for continual learning with external memory that builds on recent advances in neuroscience.
arXiv Detail & Related papers (2021-05-05T14:32:47Z) - Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [133.93803565077337]
retrieval-augmented generation models combine pre-trained parametric and non-parametric memory for language generation.
We show that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.
arXiv Detail & Related papers (2020-05-22T21:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.