論文の概要: Fact-checking with Generative AI: A Systematic Cross-Topic Examination of LLMs Capacity to Detect Veracity of Political Information
- arxiv url: http://arxiv.org/abs/2503.08404v1
- Date: Tue, 11 Mar 2025 13:06:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:46:25.299587
- Title: Fact-checking with Generative AI: A Systematic Cross-Topic Examination of LLMs Capacity to Detect Veracity of Political Information
- Title(参考訳): ジェネレーティブAIを用いたFact-checking:政治情報の正確性を検出するLLMの系統的横断的検証
- Authors: Elizaveta Kuznetsova, Ilaria Vitulano, Mykola Makhortykh, Martha Stolze, Tomas Nagy, Victoria Vziatysheva,
- Abstract要約: 本研究の目的は,大規模言語モデル (LLM) がファクトチェックにどのように用いられるかを評価することである。
我々は5つのLLMの性能を体系的に評価するAI監査手法を用いる。
結果は、特にセンシティブなトピックにおいて、モデルが偽文を識別するのが優れていることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The purpose of this study is to assess how large language models (LLMs) can be used for fact-checking and contribute to the broader debate on the use of automated means for veracity identification. To achieve this purpose, we use AI auditing methodology that systematically evaluates performance of five LLMs (ChatGPT 4, Llama 3 (70B), Llama 3.1 (405B), Claude 3.5 Sonnet, and Google Gemini) using prompts regarding a large set of statements fact-checked by professional journalists (16,513). Specifically, we use topic modeling and regression analysis to investigate which factors (e.g. topic of the prompt or the LLM type) affect evaluations of true, false, and mixed statements. Our findings reveal that while ChatGPT 4 and Google Gemini achieved higher accuracy than other models, overall performance across models remains modest. Notably, the results indicate that models are better at identifying false statements, especially on sensitive topics such as COVID-19, American political controversies, and social issues, suggesting possible guardrails that may enhance accuracy on these topics. The major implication of our findings is that there are significant challenges for using LLMs for factchecking, including significant variation in performance across different LLMs and unequal quality of outputs for specific topics which can be attributed to deficits of training data. Our research highlights the potential and limitations of LLMs in political fact-checking, suggesting potential avenues for further improvements in guardrails as well as fine-tuning.
- Abstract(参考訳): 本研究の目的は,大規模言語モデル (LLM) がファクトチェックにどのように用いられるかを評価することである。
この目的を達成するために、専門家ジャーナリストが事実チェックした大量の主張(16,513件)について、AI監査手法を用いて、5つのLLM(ChatGPT 4, Llama 3 (70B), Llama 3.1 (405B), Claude 3.5 Sonnet, Google Gemini)のパフォーマンスを体系的に評価する。
具体的には、トピックモデリングと回帰分析を用いて、どの要因(例えば、プロンプトやLLMタイプ)が真、偽、混合文の評価に影響を及ぼすかを調べる。
以上の結果から,ChatGPT 4とGoogle Geminiは他のモデルよりも高い精度を達成できたが,モデル全体のパフォーマンスは低調であることがわかった。
この結果は、特に新型コロナウイルス、アメリカの政治論争、社会問題といったセンシティブなトピックについて、モデルが偽の主張を識別するのが優れていることを示唆しており、これらのトピックの正確性を高める可能性があることを示唆している。
本研究の大きな意味は, ファクトチェックにLLMを使用する場合, 異なるLLM間でのパフォーマンスが著しく変化すること, トレーニングデータの不足に起因する特定のトピックに対するアウトプットの質の低下など, 重大な課題があるということである。
我々の研究は、政治的事実チェックにおけるLLMの可能性と限界を強調し、ガードレールのさらなる改善と微調整の道のりを示唆している。
関連論文リスト
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Benchは、安全でないユーザ要求を認識し拒否する大規模言語モデル(LLM)能力を評価するためのベンチマークである。
まず、既存の手法では、安全でないトピックの粗い分類を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - Finding Blind Spots in Evaluator LLMs with Interpretable Checklists [23.381287828102995]
テキスト生成タスクにおける評価器として,Large Language Models (LLMs) の有効性を検討する。
我々は,4つの重要な能力を評価する上で,評価用LLMの習熟度を評価するための新しいフレームワークであるFBIを提案する。
論文 参考訳(メタデータ) (2024-06-19T10:59:48Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
RUPBenchは,多種多様な推論タスクにわたる大規模言語モデル(LLM)を評価するために設計されたベンチマークである。
我々のベンチマークには15の推論データセットが組み込まれており、コモンセンス、算術、論理、知識集約推論に分類されている。
GPT-4o, Llama3, Phi-3, Gemmaといった最先端のLCMの原文および摂動データセットの性能を調べることにより, その堅牢性およびエラーパターンを詳細に解析する。
論文 参考訳(メタデータ) (2024-06-16T17:26:44Z) - Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning [11.63133816413199]
大言語モデル (LLM) は数学語問題 (MWP) に適用されている。
本稿では,ルールベース手法とより小さな言語モデルにより生成される正しい推論ステップと誤推論ステップをMWPに組み込んだ,新しいデータセットMWP-MISTAKEを提案する。
GPT-$oの誤り検出と修正における優れた性能と、より小さなモデルで直面する永続的な課題を強調した。
論文 参考訳(メタデータ) (2024-06-16T08:06:05Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は意思決定タスクを自動化するために使用される。
本稿では,LPMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを評価する。
さまざまな因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成します。
これらのベンチマークにより、LLMが事実を記憶したり、他のショートカットを見つけたりすることで、変化を正確に予測する能力を切り離すことができます。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Are Large Language Models Reliable Judges? A Study on the Factuality
Evaluation Capabilities of LLMs [8.526956860672698]
大きな言語モデル(LLM)は、その顕著な能力のために注目を集めている。
本研究では,テキスト生成モデルにより生成された要約における事実整合性の信頼性評価としてのLCMの可能性について検討する。
論文 参考訳(メタデータ) (2023-11-01T17:42:45Z) - The Perils & Promises of Fact-checking with Large Language Models [55.869584426820715]
大規模言語モデル(LLM)は、学術論文、訴訟、ニュース記事を書くことをますます信頼されている。
語句検索,文脈データ検索,意思決定などにより,実検におけるLLMエージェントの使用状況を評価する。
本研究は, 文脈情報を用いたLLMの高度化を示すものである。
LLMは事実チェックにおいて有望であるが、不整合の正確性のため注意が必要である。
論文 参考訳(メタデータ) (2023-10-20T14:49:47Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
本稿では,Felmと呼ばれる大規模言語モデルのファクチュアリティ評価のためのベンチマークを紹介する。
我々は,大規模言語モデルから生成された応答を収集し,微粒な方法で事実ラベルを注釈付けする。
その結果,検索は事実性評価に役立つが,現在のLCMは事実の誤りを忠実に検出するには不十分であることがわかった。
論文 参考訳(メタデータ) (2023-10-01T17:37:31Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Benchmarking Large Language Models in Retrieval-Augmented Generation [53.504471079548]
大規模言語モデルに対する検索拡張生成の影響を系統的に検討する。
我々は、RAGに必要な4つの基本能力で、異なる大規模言語モデルの性能を解析する。
RGB(Retrieval-Augmented Generation Benchmark)は、英語と中国語の両方でRAG評価を行うための新しいコーパスである。
論文 参考訳(メタデータ) (2023-09-04T08:28:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。