On the Baltimore Light RailLink into the quantum future
- URL: http://arxiv.org/abs/2406.11268v1
- Date: Mon, 17 Jun 2024 07:17:14 GMT
- Title: On the Baltimore Light RailLink into the quantum future
- Authors: Krzysztof Domino, Emery Doucet, Reece Robertson, Bartłomiej Gardas, Sebastian Deffner,
- Abstract summary: This work aims to showcase how the inherent noise in NISQ devices can be leveraged to solve real-world problems effectively.
We generate and analyze solutions for managing train traffic under disturbances.
Our research marks the inaugural application of both quantum computing paradigms to tramway and railway rescheduling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the current era of noisy intermediate-scale quantum (NISQ) technology, quantum devices present new avenues for addressing complex, real-world challenges including potentially NP-hard optimization problems. This work aims to showcase how the inherent noise in NISQ devices can be leveraged to solve such real-world problems effectively. Utilizing a D-Wave quantum annealer and IonQ's gate-based NISQ computers, we generate and analyze solutions for managing train traffic under stochastic disturbances. Our case study focuses on the Baltimore Light RailLink, which embodies the characteristics of both tramway and railway networks. We explore the feasibility of using NISQ technology to model the stochastic nature of disruptions in these transportation systems. Our research marks the inaugural application of both quantum computing paradigms to tramway and railway rescheduling, highlighting the potential of quantum noise as a beneficial resource in complex optimization scenarios.
Related papers
- Efficient Simulation of Open Quantum Systems on NISQ Trapped-Ion Hardware [0.0]
We propose an efficient framework for simulating open quantum systems on NISQ hardware.
Our approach avoids the computationally expensive Trotterization method and exploits the Lindblad master equation.
We show strong agreement between the simulations on real quantum hardware and exact solutions.
arXiv Detail & Related papers (2024-10-14T17:13:47Z) - Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation
via Neural Networks [0.4779196219827508]
Variational Quantum Eigensolver (VQE) is a promising algorithm for solving complex quantum problems.
The ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes.
This research introduces a novel approach by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations.
arXiv Detail & Related papers (2024-03-10T15:35:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Supply Chain Logistics with Quantum and Classical Annealing Algorithms [0.0]
Noisy intermediate-scale quantum (NISQ) hardware is almost universally incompatible with full-scale optimization problems of practical importance.
We investigate a problem of substantial commercial value, multi-truck vehicle routing for supply chain logistics, at the scale used by a corporation in their operations.
Our work gives a set of techniques that can be adopted in contexts beyond vehicle routing to apply NISQ devices in a hybrid fashion to large-scale problems of commercial interest.
arXiv Detail & Related papers (2022-05-09T17:36:21Z) - Quantum annealing in the NISQ era: railway conflict management [0.44040106718326594]
We consider a practical railway dispatching problem: delay and conflict management on single-track railway lines.
We introduce a quadratic unconstrained binary optimization (QUBO) model of this problem, compatible with the emerging quantum annealing technology.
As a proof-of-concept, we solve selected real-life problems from the Polish railway network using D-Wave quantum annealers.
arXiv Detail & Related papers (2021-12-07T13:17:21Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Quantum computing approach to railway dispatching and conflict
management optimization on single-track railway lines [0.4724825031148411]
We consider a practical railway dispatching problem: delay and conflict management on a single-track railway line.
We introduce a quadratic unconstrained binary optimization (QUBO) model of the problem in question, compatible with the emerging quantum annealing technology.
As a proof-of-concept, we solve selected real-life problems from the Polish railway network using D-Wave quantum annealers.
arXiv Detail & Related papers (2020-10-16T08:17:57Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.