論文の概要: BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models
- arxiv url: http://arxiv.org/abs/2406.11309v1
- Date: Mon, 17 Jun 2024 08:16:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 15:50:52.728139
- Title: BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models
- Title(参考訳): BaFTA: ゼロショットビジョンランゲージモデルのためのバックプロップフリーテスト時間適応
- Authors: Xuefeng Hu, Ke Zhang, Min Sun, Albert Chen, Cheng-Hao Kuo, Ram Nevatia,
- Abstract要約: 本稿では,視覚言語モデルの試験時間適応のためのバックプロパゲーションフリーアルゴリズムBaFTAを提案する。
BaFTAは、投影された埋め込み空間内のオンラインクラスタリングを使用して、クラスセントロイドを直接推定する。
我々は,BaFTAが最先端の試験時間適応手法を効率と効率の両方で一貫して上回っていることを実証した。
- 参考スコア(独自算出の注目度): 20.88680592729709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale pretrained vision-language models like CLIP have demonstrated remarkable zero-shot image classification capabilities across diverse domains. To enhance CLIP's performance while preserving the zero-shot paradigm, various test-time prompt tuning methods have been introduced to refine class embeddings through unsupervised learning objectives during inference. However, these methods often encounter challenges in selecting appropriate learning rates to prevent collapsed training in the absence of validation data during test-time adaptation. In this study, we propose a novel backpropagation-free algorithm BaFTA for test-time adaptation of vision-language models. Instead of fine-tuning text prompts to refine class embeddings, our approach directly estimates class centroids using online clustering within a projected embedding space that aligns text and visual embeddings. We dynamically aggregate predictions from both estimated and original class embeddings, as well as from distinct augmented views, by assessing the reliability of each prediction using R\'enyi Entropy. Through extensive experiments, we demonstrate that BaFTA consistently outperforms state-of-the-art test-time adaptation methods in both effectiveness and efficiency.
- Abstract(参考訳): CLIPのような大規模事前訓練された視覚言語モデルでは、さまざまな領域にまたがる顕著なゼロショット画像分類機能が示されている。
ゼロショットのパラダイムを保ちながらCLIPの性能を向上させるため、推論中に教師なし学習目的を通じてクラス埋め込みを洗練させる様々なテスト時プロンプトチューニング手法が導入された。
しかし、これらの手法は、テスト時間適応時の検証データがない場合に、故障したトレーニングを防止するための適切な学習率を選択する際の課題に遭遇することが多い。
本研究では,視覚言語モデルの試験時間適応のためのバックプロパゲーションフリーアルゴリズムBaFTAを提案する。
テキストの微調整がクラス埋め込みを洗練させる代わりに、我々のアプローチは、テキストと視覚的な埋め込みを整列する投影された埋め込み空間内のオンラインクラスタリングを用いて、クラスセンタロイドを直接推定する。
我々はR'enyi Entropyを用いて予測の信頼性を評価することにより、推定クラス埋め込みと原クラス埋め込みの両方、および異なる拡張ビューから予測を動的に集約する。
広範囲な実験により,BaFTAは最先端の試験時間適応法よりも有効性と効率性に優れていたことが実証された。
関連論文リスト
- Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
テスト時推論において視覚言語モデル(VLM)が遭遇する分布ドリフトを軽減するために,クラステキスト情報を活用する方法を示す。
本稿では,ラベル割り当て問題の固定セントロイドとしてジェネリッククラステキスト埋め込みを利用して,テスト時間サンプルの擬似ラベルを生成することを提案する。
多様な複雑性を示す複数の人気のあるテスト時間適応ベンチマークの実験は、CLIP-OTの優位性を実証的に示している。
論文 参考訳(メタデータ) (2024-11-26T00:15:37Z) - Active Learning for Vision-Language Models [29.309503214127016]
視覚言語モデル(VLM)のゼロショット分類性能を向上させる新しいアクティブラーニング(AL)フレームワークを提案する。
提案手法はまず, VLMの予測エントロピーを校正し, 自己不確かさと隣接認識の不確実性の組み合わせを用いて, 有効試料選択のための信頼性のある不確実性尺度を算出する。
提案手法は,複数の画像分類データセットにおいて,既存のAL手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-29T16:25:50Z) - A Lost Opportunity for Vision-Language Models: A Comparative Study of Online Test-Time Adaptation for Vision-Language Models [3.0495235326282186]
ディープラーニングでは、分散シフトに対する堅牢性を維持することが重要です。
この研究は、視覚言語基礎モデルをテスト時に適用するための幅広い可能性を探究する。
論文 参考訳(メタデータ) (2024-05-23T18:27:07Z) - Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations [19.800907485589402]
CLIPのような微調整済みの視覚言語モデルは、さまざまな下流タスクで成功している。
これらの調整されたモデルは高度に専門化され、実際の展開の実用性が制限される傾向にある。
微調整CLIPのための軽量表現校正法を提案する。
論文 参考訳(メタデータ) (2024-03-12T01:47:17Z) - In-context Prompt Learning for Test-time Vision Recognition with Frozen Vision-language Model [13.983810804606264]
In-Context Prompt Learning (InCPL) を提案する。
InCPLは、コンテキスト情報としてラベル付き例がほとんどない新しいテストサンプルを関連付けている。
テストサンプルに適した視覚的プロンプトを最適化するために、コンテキスト対応の教師なし損失を導入する。
論文 参考訳(メタデータ) (2024-03-10T08:15:51Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
新たなパラダイムであるテスト時適応は、事前トレーニングされたモデルをテスト中にラベルのないデータに適用し、予測を行う可能性がある。
このパラダイムの最近の進歩は、推論に先立って自己適応モデルのトレーニングにラベルのないデータを活用するという大きな利点を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-03-27T16:32:21Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
テスト時間バッチ正規化(BN)や自己学習といった,一般的な適応手法では,2つの好ましくない欠陥が隠されていることがわかった。
まず、テスト時間BNにおける正規化統計は、現在受信されているテストサンプルに完全に影響され、その結果、不正確な推定結果が得られることを明らかにする。
第二に、テスト時間適応中にパラメータ更新が支配的なクラスに偏っていることを示す。
論文 参考訳(メタデータ) (2023-01-30T15:54:00Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
分類器の重みを再バランスすることなく、包含角度で認識確率を再構成する。
予測形式再構成の性能向上に着想を得て, この角度予測の異なる特性について検討する。
CIFAR10/100-LT と ImageNet-LT を事前学習することなく、ピアメソッド間で最高の性能を得ることができる。
論文 参考訳(メタデータ) (2022-12-03T07:52:48Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
テスト時間プロンプトチューニング (TPT) を提案し, 適応的なプロンプトを1つのテストサンプルで学習する。
TPTはCLIPのゼロショットトップ1の精度を平均3.6%改善する。
クロスデータセットの一般化を目に見えないカテゴリで評価する際、PTは追加のトレーニングデータを使用する最先端のアプローチと同等に機能する。
論文 参考訳(メタデータ) (2022-09-15T17:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。