論文の概要: Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey
- arxiv url: http://arxiv.org/abs/2406.11445v4
- Date: Thu, 12 Sep 2024 19:36:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 23:07:35.882443
- Title: Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey
- Title(参考訳): 心電図の逆問題と心電図 : 心電図による検討
- Authors: Lei Li, Julia Camps, Blanca Rodriguez, Vicente Grau,
- Abstract要約: 心臓デジタル双生児(英: Cardiac Digital twins、CDT)は、複雑な心臓機構を理解するために使用される仮想表現である。
近年の計算手法の進歩により、ECG逆推論の精度と効率が大幅に向上した。
本稿では,心電図逆問題,検証戦略,臨床応用,今後の展望を概観する。
- 参考スコア(独自算出の注目度): 6.1689808850463335
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cardiac digital twins (CDTs) are personalized virtual representations used to understand complex cardiac mechanisms. A critical component of CDT development is solving the ECG inverse problem, which enables the reconstruction of cardiac sources and the estimation of patient-specific electrophysiology (EP) parameters from surface ECG data. Despite challenges from complex cardiac anatomy, noisy ECG data, and the ill-posed nature of the inverse problem, recent advances in computational methods have greatly improved the accuracy and efficiency of ECG inverse inference, strengthening the fidelity of CDTs. This paper aims to provide a comprehensive review of the methods of solving ECG inverse problem, the validation strategies, the clinical applications, and future perspectives. For the methodologies, we broadly classify state-of-the-art approaches into two categories: deterministic and probabilistic methods, including both conventional and deep learning-based techniques. Integrating physics laws with deep learning models holds promise, but challenges such as capturing dynamic electrophysiology accurately, accessing accurate domain knowledge, and quantifying prediction uncertainty persist. Integrating models into clinical workflows while ensuring interpretability and usability for healthcare professionals is essential. Overcoming these challenges will drive further research in CDTs.
- Abstract(参考訳): 心臓デジタル双生児(英: Cardiac Digital twins、CDT)は、複雑な心臓機構を理解するために使用される仮想表現である。
CDT開発における重要な要素は、心電図逆問題(ECG inverse problem)の解決であり、心電図データから心電図源の再構築と患者特異的電気生理学的パラメータ(EP)の推定を可能にする。
複雑な心臓解剖学、ノイズの多い心電図データ、逆問題の性質などの課題にもかかわらず、近年の計算手法の進歩により、心電図逆推論の精度と効率が大幅に向上し、CDTの忠実度が向上した。
本稿では,心電図逆問題,検証戦略,臨床応用,今後の展望を概観する。
提案手法は,従来の手法と深層学習技術の両方を含む,決定論的手法と確率論的手法の2つのカテゴリに大別される。
物理法則をディープラーニングモデルと統合することは有望であるが、動的電気生理学を正確に捉え、正確なドメイン知識にアクセスし、予測の不確実性を定量化するといった課題は継続する。
医療専門家にとって、解釈可能性とユーザビリティを確保しながら、モデルを臨床ワークフローに統合することは不可欠である。
これらの課題を克服すれば、CDTの研究がさらに進むことになる。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Electrocardiogram Report Generation and Question Answering via Retrieval-Augmented Self-Supervised Modeling [19.513904491604794]
ECG-ReGenは、ECG-to-textレポート生成と質問応答のための検索ベースのアプローチである。
事前学習と動的検索とLarge Language Model(LLM)ベースの改善を組み合わせることで、ECG-ReGenはECGデータと関連するクエリを効果的に分析する。
論文 参考訳(メタデータ) (2024-09-13T12:50:36Z) - Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
不規則な心臓リズムを特徴とする不整脈は、深刻な診断課題を呈する。
本研究では,不整脈分類の複雑さに対処するために,ディープラーニング技術を活用した革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-13T19:56:15Z) - DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography [37.32413956117856]
本研究では,End-Diastolic (ED) フレームとEnd-Systolic (ES) フレームを識別するための教師なしおよびトレーニング不要な手法を提案する。
アンカー点の同定と方向変形解析により,初期セグメンテーション画像の精度への依存性を効果的に低減する。
本手法は,学習モデルと同等の精度を,関連する欠点を伴わずに達成する。
論文 参考訳(メタデータ) (2024-03-19T14:51:01Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks [0.0]
臨床的には, 誤診患者に対する心電図記録の割り当ては不注意に発生することがある。
本稿では,2つの心電図が同一患者に由来するかどうかを判定する,小型で効率的な神経ネットワークモデルを提案する。
PTB-XL 上でのギャラリープローブによる患者識別において、760 倍のパラメータを用いて最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-09T18:53:25Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
本稿では,ECG信号の自動診断のためのGAN(Generative Adversarial Network)を用いた2階層型階層型ディープラーニングフレームワークを提案する。
第1レベルのモデルはメモリ拡張DeepオートエンコーダとGANで構成されており、異常信号と通常のECGを区別して異常検出を行う。
第2レベルの学習は、異なる不整脈識別のための堅牢な多クラス分類を目指している。
論文 参考訳(メタデータ) (2022-10-19T12:29:05Z) - Analysis of Digitalized ECG Signals Based on Artificial Intelligence and
Spectral Analysis Methods Specialized in ARVC [0.0]
不整脈性右室心筋症(英: arrhythmogenic right ventricular cardiomyopathy、ARVC)は、患者の2年目から4年目に発症する遺伝性心筋疾患である。
心電図(ECGs)に基づくこの疾患の有効かつ時間的診断は、早期の心血管死の減少に重要な役割を担っている。
論文 参考訳(メタデータ) (2022-02-28T13:12:50Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。