論文の概要: Automating Easy Read Text Segmentation
- arxiv url: http://arxiv.org/abs/2406.11464v1
- Date: Mon, 17 Jun 2024 12:25:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 14:51:50.371637
- Title: Automating Easy Read Text Segmentation
- Title(参考訳): 読みやすいテキストセグメンテーションの自動化
- Authors: Jesús Calleja, Thierry Etchegoyhen, David Ponce,
- Abstract要約: 読みやすいテキストは、読み難い人のための情報にアクセスするための主要な形態の1つである。
このタイプのテキストの重要な特徴の1つは、文をより小さな文法セグメントに分割する必要があることである。
マスク付きおよび生成言語モデルと構成的構文解析を併用して,タスクのための新しい手法について検討する。
- 参考スコア(独自算出の注目度): 2.7309692684728617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Easy Read text is one of the main forms of access to information for people with reading difficulties. One of the key characteristics of this type of text is the requirement to split sentences into smaller grammatical segments, to facilitate reading. Automated segmentation methods could foster the creation of Easy Read content, but their viability has yet to be addressed. In this work, we study novel methods for the task, leveraging masked and generative language models, along with constituent parsing. We conduct comprehensive automatic and human evaluations in three languages, analysing the strengths and weaknesses of the proposed alternatives, under scarce resource limitations. Our results highlight the viability of automated ER segmentation and remaining deficiencies compared to expert-driven human segmentation.
- Abstract(参考訳): 読みやすいテキストは、読み難い人のための情報にアクセスするための主要な形態の1つである。
このタイプのテキストの重要な特徴の1つは、読みやすいように文をより小さな文法セグメントに分割する必要があることである。
自動セグメンテーションメソッドは、Easy Readコンテンツの作成を促進する可能性があるが、その生存性はまだ解決されていない。
本研究では,マスク付きおよび生成言語モデルと構成解析を併用したタスクの新しい手法について検討する。
提案する選択肢の長所と短所を分析し,資源制限の少ない3言語で総合的な自動評価と人的評価を行う。
本研究は, 自動ERセグメンテーションの実現可能性と, 専門家主導のヒトセグメンテーションと比較し, 残りの欠陥について考察した。
関連論文リスト
- Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - From Text Segmentation to Smart Chaptering: A Novel Benchmark for
Structuring Video Transcriptions [63.11097464396147]
音声コンテンツに焦点をあてた新しいベンチマークYTSegを導入し、その内容は本質的に非構造的であり、トポロジと構造的にも多様である。
また,高効率な階層分割モデルMiniSegを導入する。
論文 参考訳(メタデータ) (2024-02-27T15:59:37Z) - Digital Comprehensibility Assessment of Simplified Texts among Persons
with Intellectual Disabilities [2.446971913303003]
本研究は,タブレットコンピュータ上でドイツ語のテキストを読み取る知的障害を有する者を含むテキスト理解度の評価を行った。
複数選択的理解質問、難易度評価、応答時間、読解速度の4つの異なる方法について検討した。
知的障害者の対象群では,読解速度の分析が参加者の読解行動に有意な洞察を与える一方で,最も信頼性の高い尺度として理解的疑問が出現した。
論文 参考訳(メタデータ) (2024-02-20T15:37:08Z) - Generating Summaries with Controllable Readability Levels [67.34087272813821]
テキストの複雑さ、主題、読者の背景知識など、可読性レベルに影響を与える要因がいくつかある。
現在のテキスト生成アプローチでは制御が洗練されておらず、結果として読者の習熟度にカスタマイズされないテキストが作られる。
可読性を制御するための3つのテキスト生成手法を開発した。命令ベースの可読性制御,要求される可読性と観測される可読性の間のギャップを最小限に抑える強化学習,および,ルックアヘッドを用いて今後の復号化ステップの可読性を評価する復号手法である。
論文 参考訳(メタデータ) (2023-10-16T17:46:26Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
大規模言語モデル(LLM)を用いた文書の合成による文レベル検出の課題について紹介する。
次に,文レベルのAIGT検出機能として,ホワイトボックスLEMのログ確率リストを利用した textbfSequence textbfX (Check) textbfGPT を提案する。
論文 参考訳(メタデータ) (2023-10-13T07:18:53Z) - LC-Score: Reference-less estimation of Text Comprehension Difficulty [0.0]
我々は、参照なしのフランス語テキストに対して、テキスト理解度を訓練するための簡単なアプローチであるtextscLC-Scoreを提示する。
我々の目的は,テキストがtextitLangage Clair (LC, textitClear Language) ガイドラインに適合する範囲を定量的に把握することである。
i) 統計モデルの学習に使用される言語的動機付け指標を使用すること,(ii) 事前学習された言語モデルを利用したテキストから直接ニューラルラーニングを行うこと,の2つのアプローチを探索する。
論文 参考訳(メタデータ) (2023-10-04T11:49:37Z) - Text Simplification of Scientific Texts for Non-Expert Readers [3.4761212729163318]
科学的な抽象化の単純化は、非専門家がコア情報にアクセスするのに役立つ。
これは、例えば、新しい治療法について読んでいるがん患者に特に関係している。
論文 参考訳(メタデータ) (2023-07-07T13:05:11Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - Controlling Pre-trained Language Models for Grade-Specific Text
Simplification [22.154454849167077]
本研究では,異なる制御機構がテキスト単純化システムの妥当性と簡易性に与える影響について検討する。
本稿では,インスタンス単位のインスタンス単位で,特定のグレードレベルのテキストを簡略化するために必要な編集操作を簡易に予測する手法を提案する。
論文 参考訳(メタデータ) (2023-05-24T10:29:45Z) - Toward Unifying Text Segmentation and Long Document Summarization [31.084738269628748]
文章・音声文書の抽出要約において,部分分割が果たす役割について検討する。
本手法は,要約とセグメンテーションを同時に行うことによって,頑健な文表現を学習する。
以上の結果から,本モデルは,公開ベンチマーク上での最先端性能を達成できるだけでなく,異種間転送性も向上できることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T22:07:10Z) - Enabling Language Models to Fill in the Blanks [81.59381915581892]
文書中の任意の位置にあるテキストの欠落を予測するタスクである,テキストを埋め込むためのシンプルなアプローチを提案する。
我々は、人工的にマスキングされたテキストと隠蔽されたテキストの連結を含むシーケンスに基づいて、オフザシェルフ言語モデル(またはファインチューン)を訓練する。
言語モデリングにより,この手法により,3つの分野(短編,科学的な要約,歌詞)において,LMが文全体を効果的に埋め込むことができることを示す。
論文 参考訳(メタデータ) (2020-05-11T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。