論文の概要: How Far Can In-Context Alignment Go? Exploring the State of In-Context Alignment
- arxiv url: http://arxiv.org/abs/2406.11474v1
- Date: Mon, 17 Jun 2024 12:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 14:51:50.304228
- Title: How Far Can In-Context Alignment Go? Exploring the State of In-Context Alignment
- Title(参考訳): コンテキストアライメントはどこまで進むのか? - コンテキストアライメントの現状を探る
- Authors: Heyan Huang, Yinghao Li, Huashan Sun, Yu Bai, Yang Gao,
- Abstract要約: In-Context Learning (ICL) は、大規模言語モデルと、In-Context Alignment (ICA) と呼ばれる人間の好みを合わせることができる。
コンテキストテキストは、形式、システムプロンプト、例の3つのカテゴリに分けられる。
本研究は,モデルのアライメント能力を高めるために,サンプル部が重要であることを示唆する。
- 参考スコア(独自算出の注目度): 48.0254056812898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have demonstrated that In-Context Learning (ICL), through the use of specific demonstrations, can align Large Language Models (LLMs) with human preferences known as In-Context Alignment (ICA), indicating that models can comprehend human instructions without requiring parameter adjustments. However, the exploration of the mechanism and applicability of ICA remains limited. In this paper, we begin by dividing the context text used in ICA into three categories: format, system prompt, and example. Through ablation experiments, we investigate the effectiveness of each part in enabling ICA to function effectively. We then examine how variants in these parts impact the model's alignment performance. Our findings indicate that the example part is crucial for enhancing the model's alignment capabilities, with changes in examples significantly affecting alignment performance. We also conduct a comprehensive evaluation of ICA's zero-shot capabilities in various alignment tasks. The results indicate that compared to parameter fine-tuning methods, ICA demonstrates superior performance in knowledge-based tasks and tool-use tasks. However, it still exhibits certain limitations in areas such as multi-turn dialogues and instruction following.
- Abstract(参考訳): 近年の研究では、特定のデモンストレーションを用いて、インコンテキスト学習(ICL)が、大規模言語モデル(LLM)と、インコンテキストアライメント(ICA)と呼ばれる人間の嗜好を一致させることができることが示されており、モデルがパラメータ調整を必要とせず、人間の指示を理解できることが示されている。
しかし,ICAの機構と適用性は依然として限られている。
本稿では,ICAで使用されるコンテキストテキストを,形式,システムプロンプト,例の3つのカテゴリに分けることから始める。
アブレーション実験により,ICAを効果的に機能させるための各部位の有効性について検討した。
次に、これらの部分の変種がモデルのアライメントパフォーマンスにどのように影響するかを検討する。
この結果から, モデルアライメント能力の向上にはサンプル部が不可欠であることが示唆された。
また,様々なアライメントタスクにおいて,ICAのゼロショット能力を総合的に評価する。
その結果,ICAはパラメータ細調整法と比較して,知識ベースタスクやツールユースタスクにおいて優れた性能を示した。
しかし、マルチターン対話や後続の命令といった分野ではまだ一定の制限がある。
関連論文リスト
- DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - Bayesian Example Selection Improves In-Context Learning for Speech, Text, and Visual Modalities [15.931776592470895]
大規模言語モデル(LLM)は、文脈内学習(ICL)を通じて新しいタスクに適応できる
本稿では,ICLのための新しいベイジアン・イン・コンテクスト・サンプル・セレクション法(ByCS)を提案する。
論文 参考訳(メタデータ) (2024-04-23T03:42:48Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
大規模言語モデル(LLM)が自然言語処理の標準となっている。
インコンテキスト・ラーニング(ICL)は、いくつかの実演例の選択に依存している。
パラレルインコンテキスト学習(ParaICL)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-31T05:56:15Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を用いて広範囲のタスクを実行するという印象的な能力を示している。
本研究ではまず,データとモデルの両方の側面から,この分散に寄与する要因を再検討し,実演の選択がデータとモデルに依存していることを確かめる。
本研究では,データとモデルに依存した実演選択手法である textbfTopK + ConE を提案する。
論文 参考訳(メタデータ) (2024-01-22T16:25:27Z) - Towards Best Practices of Activation Patching in Language Models:
Metrics and Methods [9.121998462494533]
評価指標や汚損手法を含む,アクティベーションパッチングにおける方法論的詳細の影響について検討する。
経験的観察に支えられ、ある指標や方法が好まれる理由について、概念的な議論を行う。
論文 参考訳(メタデータ) (2023-09-27T21:53:56Z) - In-Context Demonstration Selection with Cross Entropy Difference [95.21947716378641]
大規模言語モデル(LLM)は、ゼロショットタスクのパフォーマンスを改善するためにコンテキスト内デモを使用することができる。
テキスト内デモを選択するためのクロスエントロピー差分法(CED)を提案する。
論文 参考訳(メタデータ) (2023-05-24T05:04:00Z) - In-Context Probing: Toward Building Robust Classifiers via Probing Large
Language Models [5.5089506884366735]
本稿では, In-Context Probing (ICP) という代替手法を提案する。
インコンテキスト学習と同様に、入力の表現を命令で文脈化するが、出力予測を復号する代わりに、ラベルを予測するために文脈化表現を探索する。
我々はICPがファインタニングよりも優れていることを示し、より小さなモデルの上に分類器を構築するのに特に有用であることを示した。
論文 参考訳(メタデータ) (2023-05-23T15:43:04Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
大規模な事前学習言語モデル(LM)は、印象的なインコンテキスト学習(ICL)能力を示している。
本稿では,CEIL (Compositional Exemplars for In-context Learning) を提案する。
我々は、感情分析、パラフレーズ検出、自然言語推論、コモンセンス推論、オープンドメイン質問応答、コード生成、意味解析を含む7つの異なるNLPタスクから、CEILを12の分類および生成データセットで検証する。
論文 参考訳(メタデータ) (2023-02-11T14:02:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。