論文の概要: Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2406.11672v1
- Date: Mon, 17 Jun 2024 15:51:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 14:03:05.462775
- Title: Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting
- Title(参考訳): 拡張3次元ガウス平滑化のための有効ランク解析と正規化
- Authors: Junha Hyung, Susung Hong, Sungwon Hwang, Jaeseong Lee, Jaegul Choo, Jin-Hwa Kim,
- Abstract要約: 3D Gaussian Splatting(3DGS)は、高品質な3D再構成によるリアルタイムレンダリングが可能な有望な技術として登場した。
その可能性にもかかわらず、3DGSは針のようなアーティファクト、準最適ジオメトリー、不正確な正常など、課題に直面している。
正規化として有効なランクを導入し、ガウスの構造を制約する。
- 参考スコア(独自算出の注目度): 33.01987451251659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D reconstruction from multi-view images is one of the fundamental challenges in computer vision and graphics. Recently, 3D Gaussian Splatting (3DGS) has emerged as a promising technique capable of real-time rendering with high-quality 3D reconstruction. This method utilizes 3D Gaussian representation and tile-based splatting techniques, bypassing the expensive neural field querying. Despite its potential, 3DGS encounters challenges, including needle-like artifacts, suboptimal geometries, and inaccurate normals, due to the Gaussians converging into anisotropic Gaussians with one dominant variance. We propose using effective rank analysis to examine the shape statistics of 3D Gaussian primitives, and identify the Gaussians indeed converge into needle-like shapes with the effective rank 1. To address this, we introduce effective rank as a regularization, which constrains the structure of the Gaussians. Our new regularization method enhances normal and geometry reconstruction while reducing needle-like artifacts. The approach can be integrated as an add-on module to other 3DGS variants, improving their quality without compromising visual fidelity.
- Abstract(参考訳): マルチビュー画像からの3D再構成は、コンピュータビジョンとグラフィックスの基本的な課題の1つである。
近年,高品質な3D再構成によるリアルタイムレンダリング技術として,3Dガウス版3DGSが登場している。
この方法は3次元ガウス表現とタイルベースのスプラッティング技術を利用して、高価なニューラルネットワーククエリをバイパスする。
その可能性にもかかわらず、3DGSは針状アーティファクト、準最適ジオメトリー、不正確な正常といった課題に遭遇する。
有効ランク解析を用いて、3Dガウス原始体の形状統計を解析し、実効ランク1の針状形状に実際に収束するガウスを同定する。
これを解決するために、ガウスの構造を制約する正規化として有効なランクを導入する。
針状アーティファクトの低減を図り, 正規化と幾何化を図った。
このアプローチは他の3DGS亜種へのアドオンモジュールとして統合することができ、視覚的忠実さを損なうことなく品質を向上させることができる。
関連論文リスト
- RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための最初の3DGSベースのフレームワークであるR2-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Gaussian Opacity Fields: Efficient and Compact Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質でコンパクトな表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction [48.86083272054711]
latentSplatは3D潜在空間における意味ガウスを予測し、軽量な生成型2Dアーキテクチャで切り落としてデコードする手法である。
latentSplatは、高速でスケーラブルで高解像度なデータでありながら、復元品質と一般化におけるこれまでの成果よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-24T20:48:36Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian
Splatting [57.80942520483354]
3D-GSはしばしば、特異成分と異方性成分を正確にモデル化するのに困難に直面する。
球面調和の代わりに異方性球面ガウス場を利用するアプローチであるSpec-Gaussianを導入する。
実験結果から,本手法はレンダリング品質の面で既存の手法を超越していることが示された。
論文 参考訳(メタデータ) (2024-02-24T17:22:15Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。