Multiple Descents in Unsupervised Learning: The Role of Noise, Domain Shift and Anomalies
- URL: http://arxiv.org/abs/2406.11703v1
- Date: Mon, 17 Jun 2024 16:24:23 GMT
- Title: Multiple Descents in Unsupervised Learning: The Role of Noise, Domain Shift and Anomalies
- Authors: Kobi Rahimi, Tom Tirer, Ofir Lindenbaum,
- Abstract summary: We study the presence of double descent in unsupervised learning, an area that has received little attention and is not yet fully understood.
We use synthetic and real data and identify model-wise, epoch-wise, and sample-wise double descent for various applications.
- Score: 14.399035468023161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The phenomenon of double descent has recently gained attention in supervised learning. It challenges the conventional wisdom of the bias-variance trade-off by showcasing a surprising behavior. As the complexity of the model increases, the test error initially decreases until reaching a certain point where the model starts to overfit the train set, causing the test error to rise. However, deviating from classical theory, the error exhibits another decline when exceeding a certain degree of over-parameterization. We study the presence of double descent in unsupervised learning, an area that has received little attention and is not yet fully understood. We conduct extensive experiments using under-complete auto-encoders (AEs) for various applications, such as dealing with noisy data, domain shifts, and anomalies. We use synthetic and real data and identify model-wise, epoch-wise, and sample-wise double descent for all the aforementioned applications. Finally, we assessed the usability of the AEs for detecting anomalies and mitigating the domain shift between datasets. Our findings indicate that over-parameterized models can improve performance not only in terms of reconstruction, but also in enhancing capabilities for the downstream task.
Related papers
- A U-turn on Double Descent: Rethinking Parameter Counting in Statistical
Learning [68.76846801719095]
We show that double descent appears exactly when and where it occurs, and that its location is not inherently tied to the threshold p=n.
This provides a resolution to tensions between double descent and statistical intuition.
arXiv Detail & Related papers (2023-10-29T12:05:39Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Anomaly Detection via Multi-Scale Contrasted Memory [3.0170109896527086]
We introduce a new two-stage anomaly detector which memorizes during training multi-scale normal prototypes to compute an anomaly deviation score.
Our model highly improves the state-of-the-art performance on a wide range of object, style and local anomalies with up to 35% error relative improvement on CIFAR-10.
arXiv Detail & Related papers (2022-11-16T16:58:04Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
We study the phenomenon of "double descent" of the generalization error.
We find that double descent can be attributed to distinct features being learned at different scales.
arXiv Detail & Related papers (2021-12-06T18:17:08Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Optimization Variance: Exploring Generalization Properties of DNNs [83.78477167211315]
The test error of a deep neural network (DNN) often demonstrates double descent.
We propose a novel metric, optimization variance (OV), to measure the diversity of model updates.
arXiv Detail & Related papers (2021-06-03T09:34:17Z) - Double Trouble in Double Descent : Bias and Variance(s) in the Lazy
Regime [32.65347128465841]
Deep neural networks can achieve remarkable performances while interpolating the training data perfectly.
Rather than the U-curve of the bias-variance trade-off, their test error often follows a "double descent"
We develop a quantitative theory for this phenomenon in the so-called lazy learning regime of neural networks.
arXiv Detail & Related papers (2020-03-02T17:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.