論文の概要: Latent Denoising Diffusion GAN: Faster sampling, Higher image quality
- arxiv url: http://arxiv.org/abs/2406.11713v1
- Date: Mon, 17 Jun 2024 16:32:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 13:43:30.081957
- Title: Latent Denoising Diffusion GAN: Faster sampling, Higher image quality
- Title(参考訳): 潜伏拡散GAN:高速サンプリング,高画質化
- Authors: Luan Thanh Trinh, Tomoki Hamagami,
- Abstract要約: Latent Denoising Diffusion GANは、トレーニング済みのオートエンコーダを使用して、画像をコンパクトなLatent空間に圧縮する。
従来のDiffusionGANやWavelet Diffusionと比較して,評価指標の大幅な改善が見られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models are emerging as powerful solutions for generating high-fidelity and diverse images, often surpassing GANs under many circumstances. However, their slow inference speed hinders their potential for real-time applications. To address this, DiffusionGAN leveraged a conditional GAN to drastically reduce the denoising steps and speed up inference. Its advancement, Wavelet Diffusion, further accelerated the process by converting data into wavelet space, thus enhancing efficiency. Nonetheless, these models still fall short of GANs in terms of speed and image quality. To bridge these gaps, this paper introduces the Latent Denoising Diffusion GAN, which employs pre-trained autoencoders to compress images into a compact latent space, significantly improving inference speed and image quality. Furthermore, we propose a Weighted Learning strategy to enhance diversity and image quality. Experimental results on the CIFAR-10, CelebA-HQ, and LSUN-Church datasets prove that our model achieves state-of-the-art running speed among diffusion models. Compared to its predecessors, DiffusionGAN and Wavelet Diffusion, our model shows remarkable improvements in all evaluation metrics. Code and pre-trained checkpoints: \url{https://github.com/thanhluantrinh/LDDGAN.git}
- Abstract(参考訳): 拡散モデルは高忠実で多様な画像を生成するための強力なソリューションとして登場し、多くの場合、多くの状況下でGANを上回る。
しかし、その速度が遅いため、リアルタイムアプリケーションの可能性は妨げられる。
この問題に対処するため、DiffusionGANは条件付きGANを活用して、デノイングステップを大幅に削減し、推論を高速化した。
その進歩であるウェーブレット拡散は、データをウェーブレット空間に変換することによってプロセスをさらに加速し、効率を向上した。
それでもこれらのモデルは、スピードと画質の面ではまだGANに劣っている。
これらのギャップを埋めるために,事前学習されたオートエンコーダを用いてコンパクトなラテント空間に画像を圧縮し,推論速度と画質を大幅に向上させる潜伏拡散GANを提案する。
さらに,多様性と画像品質を高めるための重み付き学習戦略を提案する。
CIFAR-10, CelebA-HQ, LSUN-Churchデータセットによる実験結果から, 拡散モデル間の最先端の走行速度が得られた。
従来のDiffusionGANやWavelet Diffusionと比較して,評価指標の大幅な改善が見られた。
コードと事前訓練されたチェックポイント: \url{https://github.com/thanhluantrinh/LDDGAN.git}
関連論文リスト
- A Wavelet Diffusion GAN for Image Super-Resolution [7.986370916847687]
拡散モデルは,高忠実度画像生成のためのGAN(Generative Adversarial Network)の優れた代替品として登場した。
しかし、そのリアルタイム実現性は、遅いトレーニングと推論速度によって妨げられている。
本研究では,ウェーブレットを用いた単一画像超解法のための条件拡散GANスキームを提案する。
論文 参考訳(メタデータ) (2024-10-23T15:34:06Z) - Accelerating Diffusion for SAR-to-Optical Image Translation via Adversarial Consistency Distillation [5.234109158596138]
本稿では,SAR-to-optical Image translationのための新しいトレーニングフレームワークを提案する。
本手法では, 画像の明瞭度を保証し, 色変化を最小限に抑えるために, 反復推論ステップの低減に一貫性蒸留を用い, 対角学習を統合した。
その結果,提案手法は生成画像の視覚的品質を維持しつつ,推論速度を131倍向上させることを示した。
論文 参考訳(メタデータ) (2024-07-08T16:36:12Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
本研究では,画像復元のための新しい,効率的な拡散モデルを提案する。
提案手法は,推論中の後処理の高速化を回避し,関連する性能劣化を回避する。
提案手法は,3つの古典的IRタスクにおける現在の最先端手法よりも優れた,あるいは同等の性能を実現する。
論文 参考訳(メタデータ) (2024-03-12T05:06:07Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
拡散に基づく画像超解像法(SR)は主に低推論速度によって制限される。
本稿では,SRの拡散段数を大幅に削減する新しい,効率的な拡散モデルを提案する。
本手法は,残差をシフトすることで高分解能画像と低分解能画像の間を移動させるマルコフ連鎖を構成する。
論文 参考訳(メタデータ) (2023-07-23T15:10:02Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
本稿では,従来のプラグアンドプレイ方式を拡散サンプリングフレームワークに統合したDiffPIRを提案する。
DiffPIRは、差別的なガウスのデノイザーに依存するプラグアンドプレイIR法と比較して、拡散モデルの生成能力を継承することが期待されている。
論文 参考訳(メタデータ) (2023-05-15T20:24:38Z) - Wavelet Diffusion Models are fast and scalable Image Generators [3.222802562733787]
拡散モデルは高忠実度画像生成のための強力な解であり、多くの状況においてGANを超える。
最近のDiffusionGAN法は、サンプリングステップの数を数千から数に減らして、モデルの実行時間を著しく短縮するが、その速度はGANよりもかなり遅れている。
本稿では,新しいウェーブレット拡散方式を提案することにより,速度ギャップを低減することを目的とする。
我々は、ウェーブレット分解により、画像と特徴レベルの両方から低周波数成分を抽出し、これらの成分を適応的に処理し、良好な生成品質を維持しながら高速に処理する。
論文 参考訳(メタデータ) (2022-11-29T12:25:25Z) - Dynamic Dual-Output Diffusion Models [100.32273175423146]
反復分解に基づく生成は、他の生成モデルのクラスに匹敵する品質を示すことが示されている。
この方法の大きな欠点は、競合する結果を生み出すために数百のイテレーションが必要であることである。
近年の研究では、より少ないイテレーションでより高速に生成できるソリューションが提案されているが、画像の品質は徐々に低下している。
論文 参考訳(メタデータ) (2022-03-08T11:20:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。