CHG Shapley: Efficient Data Valuation and Selection towards Trustworthy Machine Learning
- URL: http://arxiv.org/abs/2406.11730v3
- Date: Wed, 22 Jan 2025 17:05:51 GMT
- Title: CHG Shapley: Efficient Data Valuation and Selection towards Trustworthy Machine Learning
- Authors: Huaiguang Cai,
- Abstract summary: We propose the CHG (compound of Hardness and Gradient) utility function, which approximates the utility of each data subset on model performance in every training epoch.
By deriving the closed-form Shapley value for each data point using the CHG utility function, we reduce the computational complexity to that of a single model retraining.
We further leverage CHG Shapley for real-time data selection, conducting experiments across three settings: standard datasets, label noise datasets, and class imbalance datasets.
- Score: 0.0
- License:
- Abstract: Understanding the decision-making process of machine learning models is crucial for ensuring trustworthy machine learning. Data Shapley, a landmark study on data valuation, advances this understanding by assessing the contribution of each datum to model performance. However, the resource-intensive and time-consuming nature of multiple model retraining poses challenges for applying Data Shapley to large datasets. To address this, we propose the CHG (compound of Hardness and Gradient) utility function, which approximates the utility of each data subset on model performance in every training epoch. By deriving the closed-form Shapley value for each data point using the CHG utility function, we reduce the computational complexity to that of a single model retraining, achieving a quadratic improvement over existing marginal contribution-based methods. We further leverage CHG Shapley for real-time data selection, conducting experiments across three settings: standard datasets, label noise datasets, and class imbalance datasets. These experiments demonstrate its effectiveness in identifying high-value and noisy data. By enabling efficient data valuation, CHG Shapley promotes trustworthy model training through a novel data-centric perspective. Our codes are available at https://github.com/caihuaiguang/CHG-Shapley-for-Data-Valuation and https://github.com/caihuaiguang/CHG-Shapley-for-Data-Selection.
Related papers
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.
We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.
As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Rethinking Data Shapley for Data Selection Tasks: Misleads and Merits [37.79841753524388]
Data Shapley provides a principled approach to data valuation and plays a crucial role in data-centric machine learning (ML) research.
Data selection is considered a standard application of Data Shapley, but its data selection performance has shown to be inconsistent across settings in the literature.
We introduce a hypothesis testing framework and show that Data Shapley's performance can be no better than random selection without specific constraints on utility functions.
arXiv Detail & Related papers (2024-05-06T21:46:10Z) - An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
Researchers and practitioners often have to manually curate datasets from difference sources.
We propose a data processing framework that integrates a Processing Module and an Analyzing Module.
The proposed framework is easy to use and highly flexible.
arXiv Detail & Related papers (2024-02-26T07:22:51Z) - EcoVal: An Efficient Data Valuation Framework for Machine Learning [11.685518953430554]
Existing Shapley value based frameworks for data valuation in machine learning are computationally expensive.
We introduce an efficient data valuation framework EcoVal, to estimate the value of data for machine learning models in a fast and practical manner.
arXiv Detail & Related papers (2024-02-14T16:21:47Z) - Accelerated Shapley Value Approximation for Data Evaluation [3.707457963532597]
We show that Shapley value of data points can be approximated more efficiently by leveraging structural properties of machine learning problems.
Our analysis suggests that in fact models trained on small subsets are more important in context of data valuation.
arXiv Detail & Related papers (2023-11-09T13:15:36Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
We introduce TRIAGE, a novel data characterization framework tailored to regression tasks and compatible with a broad class of regressors.
TRIAGE utilizes conformal predictive distributions to provide a model-agnostic scoring method, the TRIAGE score.
We show that TRIAGE's characterization is consistent and highlight its utility to improve performance via data sculpting/filtering, in multiple regression settings.
arXiv Detail & Related papers (2023-10-29T10:31:59Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - RLBoost: Boosting Supervised Models using Deep Reinforcement Learning [0.0]
We present RLBoost, an algorithm that uses deep reinforcement learning strategies to evaluate a particular dataset and obtain a model capable of estimating the quality of any new data.
The results of the article show that this model obtains better and more stable results than other state-of-the-art algorithms such as LOO, DataShapley or DVRL.
arXiv Detail & Related papers (2023-05-23T14:38:33Z) - Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics [118.75207687144817]
We introduce Data Maps, a model-based tool to characterize and diagnose datasets.
We leverage a largely ignored source of information: the behavior of the model on individual instances during training.
Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.
arXiv Detail & Related papers (2020-09-22T20:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.