Improving Multi-Agent Debate with Sparse Communication Topology
- URL: http://arxiv.org/abs/2406.11776v1
- Date: Mon, 17 Jun 2024 17:33:09 GMT
- Title: Improving Multi-Agent Debate with Sparse Communication Topology
- Authors: Yunxuan Li, Yibing Du, Jiageng Zhang, Le Hou, Peter Grabowski, Yeqing Li, Eugene Ie,
- Abstract summary: Multi-agent debate has proven effective in improving large language models quality for reasoning and factuality tasks.
In this paper, we investigate the effect of communication connectivity in multi-agent systems.
Our experiments on GPT and Mistral models reveal that multi-agent debates leveraging sparse communication topology can achieve comparable or superior performance.
- Score: 9.041025703879905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent debate has proven effective in improving large language models quality for reasoning and factuality tasks. While various role-playing strategies in multi-agent debates have been explored, in terms of the communication among agents, existing approaches adopt a brute force algorithm -- each agent can communicate with all other agents. In this paper, we systematically investigate the effect of communication connectivity in multi-agent systems. Our experiments on GPT and Mistral models reveal that multi-agent debates leveraging sparse communication topology can achieve comparable or superior performance while significantly reducing computational costs. Furthermore, we extend the multi-agent debate framework to multimodal reasoning and alignment labeling tasks, showcasing its broad applicability and effectiveness. Our findings underscore the importance of communication connectivity on enhancing the efficiency and effectiveness of the "society of minds" approach.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - COMMA: A Communicative Multimodal Multi-Agent Benchmark [7.831385481814481]
We introduce a novel benchmark designed to evaluate the collaborative performance of multimodal multi-agent systems through language communication.
By testing both agent-agent and agent-human collaborations using open-source and closed-source models, our findings reveal surprising weaknesses in state-of-the-art models.
arXiv Detail & Related papers (2024-10-10T02:49:47Z) - MultiAgent Collaboration Attack: Investigating Adversarial Attacks in Large Language Model Collaborations via Debate [24.92465108034783]
Large Language Models (LLMs) have shown exceptional results on current benchmarks when working individually.
The advancement in their capabilities, along with a reduction in parameter size and inference times, has facilitated the use of these models as agents.
We evaluate the behavior of a network of models collaborating through debate under the influence of an adversary.
arXiv Detail & Related papers (2024-06-20T20:09:37Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - T2MAC: Targeted and Trusted Multi-Agent Communication through Selective
Engagement and Evidence-Driven Integration [15.91335141803629]
We propose Targeted and Trusted Multi-Agent Communication (T2MAC) to help agents learn selective engagement and evidence-driven integration.
T2MAC enables agents to craft individualized messages, pinpoint ideal communication windows, and engage with reliable partners.
We evaluate our method on a diverse set of cooperative multi-agent tasks, with varying difficulties, involving different scales.
arXiv Detail & Related papers (2024-01-19T18:00:33Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - Multiagent Deep Reinforcement Learning: Challenges and Directions
Towards Human-Like Approaches [0.0]
We present the most common multiagent problem representations and their main challenges.
We identify five research areas that address one or more of these challenges.
We suggest that, for multiagent reinforcement learning to be successful, future research addresses these challenges with an interdisciplinary approach.
arXiv Detail & Related papers (2021-06-29T19:53:15Z) - When2com: Multi-Agent Perception via Communication Graph Grouping [31.804230874472292]
Many applications require multiple sensing agents and cross-agent communication due to benefits such as coverage and robustness.
It is therefore critical to develop frameworks which support multi-agent collaborative perception in a distributed and bandwidth-efficient manner.
We propose a communication framework by learning both to construct communication groups and decide when to communicate.
We demonstrate the generalizability of our framework on two different perception tasks and show that it significantly reduces communication bandwidth while maintaining superior performance.
arXiv Detail & Related papers (2020-05-30T04:41:32Z) - On Emergent Communication in Competitive Multi-Agent Teams [116.95067289206919]
We investigate whether competition for performance from an external, similar agent team could act as a social influence.
Our results show that an external competitive influence leads to improved accuracy and generalization, as well as faster emergence of communicative languages.
arXiv Detail & Related papers (2020-03-04T01:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.