Decoding the Sociotechnical Dimensions of Digital Misinformation: A Comprehensive Literature Review
- URL: http://arxiv.org/abs/2406.11853v1
- Date: Tue, 2 Apr 2024 20:09:27 GMT
- Title: Decoding the Sociotechnical Dimensions of Digital Misinformation: A Comprehensive Literature Review
- Authors: Alisson Andrey Puska, Luiz Adolpho Baroni, Roberto Pereira,
- Abstract summary: The review consists of 788 studies from SCOPUS, IEEE, and ACM digital libraries, synthesizing the primary research directions and sociotechnical challenges.
The mapping identifies issues related to the concept of misinformation, highlights deficiencies in mitigation strategies, discusses challenges in approaching stakeholders, and unveils various sociotechnical aspects relevant to understanding and mitigating the harmful effects of digital misinformation.
- Score: 1.7478203318226313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a systematic literature review in Computer Science that provide an overview of the initiatives related to digital misinformation. This is an exploratory study that covers research from 1993 to 2020, focusing on the investigation of the phenomenon of misinformation. The review consists of 788 studies from SCOPUS, IEEE, and ACM digital libraries, synthesizing the primary research directions and sociotechnical challenges. These challenges are classified into Physical, Empirical, Syntactic, Semantic, Pragmatic, and Social dimensions, drawing from Organizational Semiotics. The mapping identifies issues related to the concept of misinformation, highlights deficiencies in mitigation strategies, discusses challenges in approaching stakeholders, and unveils various sociotechnical aspects relevant to understanding and mitigating the harmful effects of digital misinformation. As contributions, this study present a novel categorization of mitigation strategies, a sociotechnical taxonomy for classifying types of false information and elaborate on the inter-relation of sociotechnical aspects and their impacts.
Related papers
- Intervention strategies for misinformation sharing on social media: A bibliometric analysis [1.8020166013859684]
Inaccurate shared information causes confusion, can adversely affect mental health, and can lead to mis-informed decision-making.
This study explores the typology of intervention strategies for addressing misinformation sharing on social media.
It identifies 4 important clusters - cognition-based, automated-based, information-based, and hybrid-based.
arXiv Detail & Related papers (2024-09-26T08:38:15Z) - Blockchain Based Information Security and Privacy Protection: Challenges and Future Directions using Computational Literature Review [1.3864583085700581]
blockchain technology has gained immense popularity in enhancing individual security and privacy.
Rapid proliferation of published research articles presents challenges for manual analysis and synthesis.
We identify 10 topics related to security and privacy and provide a detailed description of each topic.
arXiv Detail & Related papers (2024-09-22T14:41:43Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - The Sentiment Problem: A Critical Survey towards Deconstructing
Sentiment Analysis [9.379013474854776]
We investigate the sociotechnical aspects of sentiment analysis (SA) by critically examining 189 peer-reviewed papers on their applications, models, and datasets.
By delving into sociological and technological literature on sentiment, we unveil distinct conceptualizations of this term in domains such as finance, government, and medicine.
Our study exposes a lack of explicit definitions and frameworks for characterizing sentiment, resulting in potential challenges and biases.
arXiv Detail & Related papers (2023-10-18T20:42:44Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Individual Explanations in Machine Learning Models: A Case Study on
Poverty Estimation [63.18666008322476]
Machine learning methods are being increasingly applied in sensitive societal contexts.
The present case study has two main objectives. First, to expose these challenges and how they affect the use of relevant and novel explanations methods.
And second, to present a set of strategies that mitigate such challenges, as faced when implementing explanation methods in a relevant application domain.
arXiv Detail & Related papers (2021-04-09T01:54:58Z) - Survey on Visual Sentiment Analysis [87.20223213370004]
This paper reviews pertinent publications and tries to present an exhaustive overview of the field of Visual Sentiment Analysis.
The paper also describes principles of design of general Visual Sentiment Analysis systems from three main points of view.
A formalization of the problem is discussed, considering different levels of granularity, as well as the components that can affect the sentiment toward an image in different ways.
arXiv Detail & Related papers (2020-04-24T10:15:22Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
disinformation including fake news has become a global phenomenon due to its explosive growth.
Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation.
arXiv Detail & Related papers (2020-01-02T21:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.