Towards Better Benchmark Datasets for Inductive Knowledge Graph Completion
- URL: http://arxiv.org/abs/2406.11898v2
- Date: Sun, 06 Oct 2024 07:06:34 GMT
- Title: Towards Better Benchmark Datasets for Inductive Knowledge Graph Completion
- Authors: Harry Shomer, Jay Revolinsky, Jiliang Tang,
- Abstract summary: We find that the current procedure for constructing inductive KGC datasets inadvertently creates a shortcut that can be exploited.
Specifically, we observe that the Personalized PageRank (PPR) score can achieve strong or near SOTA performance on most inductive datasets.
We propose an alternative strategy for constructing inductive KGC datasets that helps mitigate the PPR shortcut.
- Score: 34.58496513149175
- License:
- Abstract: Knowledge Graph Completion (KGC) attempts to predict missing facts in a Knowledge Graph (KG). Recently, there's been an increased focus on designing KGC methods that can excel in the {\it inductive setting}, where a portion or all of the entities and relations seen in inference are unobserved during training. Numerous benchmark datasets have been proposed for inductive KGC, all of which are subsets of existing KGs used for transductive KGC. However, we find that the current procedure for constructing inductive KGC datasets inadvertently creates a shortcut that can be exploited even while disregarding the relational information. Specifically, we observe that the Personalized PageRank (PPR) score can achieve strong or near SOTA performance on most inductive datasets. In this paper, we study the root cause of this problem. Using these insights, we propose an alternative strategy for constructing inductive KGC datasets that helps mitigate the PPR shortcut. We then benchmark multiple popular methods using the newly constructed datasets and analyze their performance. The new benchmark datasets help promote a better understanding of the capabilities and challenges of inductive KGC by removing any shortcuts that obfuscate performance.
Related papers
- Exploiting Large Language Models Capabilities for Question Answer-Driven Knowledge Graph Completion Across Static and Temporal Domains [8.472388165833292]
This paper introduces a new generative completion framework called Generative Subgraph-based KGC (GS-KGC)
GS-KGC employs a question-answering format to directly generate target entities, addressing the challenge of questions having multiple possible answers.
Our method generates negative samples using known facts to facilitate the discovery of new information.
arXiv Detail & Related papers (2024-08-20T13:13:41Z) - Logical Reasoning with Relation Network for Inductive Knowledge Graph Completion [9.815135283458808]
We propose a novel iNfOmax RelAtion Network, namely NORAN, for inductive KG completion.
Our framework substantially outperforms the state-of-the-art KGC methods.
arXiv Detail & Related papers (2024-06-03T09:30:43Z) - One Subgraph for All: Efficient Reasoning on Opening Subgraphs for Inductive Knowledge Graph Completion [12.644979036930383]
Knowledge Graph Completion (KGC) has garnered massive research interest recently.
Most existing methods are designed following a transductive setting where all entities are observed during training.
In inductive KGC, which aims to deduce missing links among unseen entities, has become a new trend.
arXiv Detail & Related papers (2024-04-24T11:12:08Z) - Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward
Comprehensive Benchmarks [60.82579717007963]
We introduce an enhanced evaluation framework designed to more accurately gauge the effectiveness, consistency, and overall capability of Graph Contrastive Learning (GCL) methods.
arXiv Detail & Related papers (2024-02-24T01:47:56Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Confidence-Augmented Reinforcement Learning [24.338098716004485]
TKGC aims to predict the missing links among the entities in a temporal knwoledge graph (TKG)
Recently, a new task, i.e., TKG few-shot out-of-graph (OOG) link prediction, is proposed.
We propose a TKGC method FITCARL that combines few-shot learning with reinforcement learning to solve this task.
arXiv Detail & Related papers (2023-04-02T20:05:20Z) - Relational Message Passing for Fully Inductive Knowledge Graph
Completion [37.29833710603933]
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when KG embeddings are learned, has become a critical challenge.
Subgraph reasoning with message passing is a promising and popular solution.
We propose a new method named RMPI which uses a novel Message Passing network for fully available KGC.
arXiv Detail & Related papers (2022-10-08T10:35:52Z) - DisenKGAT: Knowledge Graph Embedding with Disentangled Graph Attention
Network [48.38954651216983]
We propose a novel Disentangled Knowledge Graph Attention Network (DisenKGAT) for Knowledge graphs.
DisenKGAT uses both micro-disentanglement and macro-disentanglement to exploit representations behind Knowledge graphs.
Our work has strong robustness and flexibility to adapt to various score functions.
arXiv Detail & Related papers (2021-08-22T04:10:35Z) - Inductive Learning on Commonsense Knowledge Graph Completion [89.72388313527296]
Commonsense knowledge graph (CKG) is a special type of knowledge graph (CKG) where entities are composed of free-form text.
We propose to study the inductive learning setting for CKG completion where unseen entities may present at test time.
InductivE significantly outperforms state-of-the-art baselines in both standard and inductive settings on ATOMIC and ConceptNet benchmarks.
arXiv Detail & Related papers (2020-09-19T16:10:26Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.