SPA-VL: A Comprehensive Safety Preference Alignment Dataset for Vision Language Model
- URL: http://arxiv.org/abs/2406.12030v3
- Date: Tue, 25 Mar 2025 16:01:59 GMT
- Title: SPA-VL: A Comprehensive Safety Preference Alignment Dataset for Vision Language Model
- Authors: Yongting Zhang, Lu Chen, Guodong Zheng, Yifeng Gao, Rui Zheng, Jinlan Fu, Zhenfei Yin, Senjie Jin, Yu Qiao, Xuanjing Huang, Feng Zhao, Tao Gui, Jing Shao,
- Abstract summary: We propose a Safety Preference Alignment dataset for Vision Language Models named SPA-VL.<n> SPA-VL covers 6 harmfulness domains, 13 categories, and 53 subcategories, and contains 100,788 samples of the quadruple (question, image, chosen response, rejected response)<n>Experiments indicate that models trained with alignment techniques on the SPA-VL dataset exhibit substantial improvements in harmlessness and helpfulness while maintaining core capabilities.
- Score: 77.86593720792986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Vision Language Models (VLMs) has brought unprecedented advances in understanding multimodal information. The combination of textual and visual semantics in VLMs is highly complex and diverse, making the safety alignment of these models challenging. Furthermore, due to the limited study on the safety alignment of VLMs, there is a lack of large-scale, high-quality datasets. To address these limitations, we propose a Safety Preference Alignment dataset for Vision Language Models named SPA-VL. In terms of breadth, SPA-VL covers 6 harmfulness domains, 13 categories, and 53 subcategories, and contains 100,788 samples of the quadruple (question, image, chosen response, rejected response). In terms of depth, the responses are collected from 12 open-source (e.g., QwenVL) and closed-source (e.g., Gemini) VLMs to ensure diversity. The construction of preference data is fully automated, and the experimental results indicate that models trained with alignment techniques on the SPA-VL dataset exhibit substantial improvements in harmlessness and helpfulness while maintaining core capabilities. SPA-VL, as a large-scale, high-quality, and diverse dataset, represents a significant milestone in ensuring that VLMs achieve both harmlessness and helpfulness.
Related papers
- Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? [83.53005932513155]
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited.
We propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences.
arXiv Detail & Related papers (2025-04-14T09:03:51Z) - COST: Contrastive One-Stage Transformer for Vision-Language Small Object Tracking [52.62149024881728]
We propose a contrastive one-stage transformer fusion framework for vision-language (VL) tracking.
We introduce a contrastive alignment strategy that maximizes mutual information between a video and its corresponding language description.
By leveraging a visual-linguistic transformer, we establish an efficient multi-modal fusion and reasoning mechanism.
arXiv Detail & Related papers (2025-04-02T03:12:38Z) - Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models [34.66687625996389]
Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks.
How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards?
We propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimize helpfulness and safety.
arXiv Detail & Related papers (2025-03-22T07:40:20Z) - VLsI: Verbalized Layers-to-Interactions from Large to Small Vision Language Models [63.27511432647797]
We propose VLsI: Verbalized Layers-to-Interactions, a new VLM family in 2B and 7B model sizes.
We validate VLsI across ten challenging vision-language benchmarks, achieving notable performance gains (11.0% for 2B and 17.4% for 7B) over GPT-4V.
arXiv Detail & Related papers (2024-12-02T18:58:25Z) - FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data [64.50893177169996]
Fine-tuning Multimodal Large Language Models (MLLMs) with Federated Learning (FL) allows for expanding the training data scope by including private data sources.
We introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios.
We develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies.
arXiv Detail & Related papers (2024-11-22T04:09:23Z) - Membership Inference Attacks against Large Vision-Language Models [40.996912464828696]
Large vision-language models (VLLMs) exhibit promising capabilities for processing multi-modal tasks across various application scenarios.
Their emergence also raises significant data security concerns, given the potential inclusion of sensitive information, such as private photos and medical records.
Detecting inappropriately used data in VLLMs remains a critical and unresolved issue.
arXiv Detail & Related papers (2024-11-05T08:35:08Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - Concept-skill Transferability-based Data Selection for Large Vision-Language Models [56.0725292404808]
We introduce COINCIDE, an effective and scalable data selection technique for training vision-language models.
We cluster the training data using internal activations from a small model, which identifies concept-skill compositions needed by a target LVLM.
Experiments demonstrate that COINCIDE achieves superior performance and data selection efficiency against 8 strong baselines.
arXiv Detail & Related papers (2024-06-16T16:15:20Z) - LLavaGuard: VLM-based Safeguards for Vision Dataset Curation and Safety Assessment [26.148022772521493]
We introduce LlavaGuard, a family of VLM-based safeguard models.
LlavaGuard offers a versatile framework for evaluating the safety compliance of visual content.
Our experiments highlight the capabilities of LlavaGuard in complex and real-world applications.
arXiv Detail & Related papers (2024-06-07T17:44:32Z) - AVIBench: Towards Evaluating the Robustness of Large Vision-Language Model on Adversarial Visual-Instructions [52.9787902653558]
Large Vision-Language Models (LVLMs) have shown significant progress in well responding to visual-instructions from users.
Despite the critical importance of LVLMs' robustness against such threats, current research in this area remains limited.
We introduce AVIBench, a framework designed to analyze the robustness of LVLMs when facing various adversarial visual-instructions.
arXiv Detail & Related papers (2024-03-14T12:51:07Z) - Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models [39.56233272612982]
Current vision large language models (VLLMs) exhibit remarkable capabilities yet are prone to generate harmful content and are vulnerable to jailbreaking attacks.
Our initial analysis finds that this is due to the presence of harmful data during vision-language instruction fine-tuning.
To address this issue, we first curate a vision-language safe instruction-following dataset VLGuard covering various harmful categories.
arXiv Detail & Related papers (2024-02-03T16:43:42Z) - Vision-Language Instruction Tuning: A Review and Analysis [52.218690619616474]
Vision-Language Instruction Tuning (VLIT) presents more complex characteristics compared to pure text instruction tuning.
We offer a detailed categorization for existing VLIT datasets and identify the characteristics that high-quality VLIT data should possess.
By incorporating these characteristics as guiding principles into the existing VLIT data construction process, we conduct extensive experiments and verify their positive impact on the performance of tuned multi-modal LLMs.
arXiv Detail & Related papers (2023-11-14T14:02:32Z) - Evaluation and Enhancement of Semantic Grounding in Large
Vision-Language Models [25.413601452403213]
Large Vision-Language Models (LVLMs) offer remarkable benefits for a variety of vision-language tasks.
Their constrained semantic grounding ability hinders their application in real-world scenarios.
We propose a data-centric enhancement method that aims to improve LVLMs' semantic grounding ability.
arXiv Detail & Related papers (2023-09-07T22:59:56Z) - Teaching Structured Vision&Language Concepts to Vision&Language Models [46.344585368641006]
We introduce the collective notion of Structured Vision&Language Concepts (SVLC)
SVLC includes object attributes, relations, and states which are present in the text and visible in the image.
We propose a more elegant data-driven approach for enhancing VL models' understanding of SVLCs.
arXiv Detail & Related papers (2022-11-21T18:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.