STNAGNN: Spatiotemporal Node Attention Graph Neural Network for Task-based fMRI Analysis
- URL: http://arxiv.org/abs/2406.12065v1
- Date: Mon, 17 Jun 2024 20:08:05 GMT
- Title: STNAGNN: Spatiotemporal Node Attention Graph Neural Network for Task-based fMRI Analysis
- Authors: Jiyao Wang, Nicha C. Dvornek, Peiyu Duan, Lawrence H. Staib, Pamela Ventola, James S. Duncan,
- Abstract summary: We show that using task-driven data structures is effective for autism analysis.
We propose a GNN-based task-based architecture and validate its performance in an autism task.
- Score: 9.35032090865023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-based fMRI uses actions or stimuli to trigger task-specific brain responses and measures them using BOLD contrast. Despite the significant task-induced spatiotemporal brain activation fluctuations, most studies on task-based fMRI ignore the task context information aligned with fMRI and consider task-based fMRI a coherent sequence. In this paper, we show that using the task structures as data-driven guidance is effective for spatiotemporal analysis. We propose STNAGNN, a GNN-based spatiotemporal architecture, and validate its performance in an autism classification task. The trained model is also interpreted for identifying autism-related spatiotemporal brain biomarkers.
Related papers
- Towards Zero-Shot Task-Generalizable Learning on fMRI [9.90774796922676]
We propose a supervised task-aware network TA-GAT to aggregate task-based fMRI acquired in different tasks to train a generalizable model.
The proposed architecture can plug-and-play in any neural network architecture to incorporate the prior knowledge of fMRI tasks into capturing functional brain patterns.
arXiv Detail & Related papers (2025-02-15T03:59:49Z) - Detecting Neurocognitive Disorders through Analyses of Topic Evolution and Cross-modal Consistency in Visual-Stimulated Narratives [84.03001845263]
Early detection of neurocognitive disorders (NCDs) is crucial for timely intervention and disease management.
Traditional narrative analysis often focuses on local indicators in microstructure, such as word usage and syntax.
We propose to investigate specific cognitive and linguistic challenges by analyzing topical shifts, temporal dynamics, and the coherence of narratives over time.
arXiv Detail & Related papers (2025-01-07T12:16:26Z) - BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
We introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks.
Our framework enables explanatory analyses of crucial brain regions involved in tasks.
arXiv Detail & Related papers (2024-12-23T09:13:35Z) - Uncovering cognitive taskonomy through transfer learning in masked autoencoder-based fMRI reconstruction [6.3348067441225915]
We employ the masked autoencoder (MAE) model to reconstruct functional magnetic resonance imaging (fMRI) data.
Our study suggests that the fMRI reconstruction with MAE model can uncover the latent representation.
arXiv Detail & Related papers (2024-05-24T09:29:16Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Learning Sequential Information in Task-based fMRI for Synthetic Data
Augmentation [10.629487323161323]
We propose an approach for generating synthetic fMRI sequences that can be used to create augmented training datasets in downstream learning.
The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task.
arXiv Detail & Related papers (2023-08-29T18:36:21Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - GATE: Graph CCA for Temporal SElf-supervised Learning for
Label-efficient fMRI Analysis [25.4835612758922]
In population graph-based disease analysis, graph convolutional neural networks (GCNs) have achieved remarkable success.
We propose a novel and theory-driven self-supervised learning framework on GCNs, namely Graph CCA for Temporal self-supervised learning on fMRI analysis GATE.
Our method is tested on two independent fMRI datasets, demonstrating superior performance on autism and dementia diagnosis.
arXiv Detail & Related papers (2022-03-17T02:23:30Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
We present a deep neural network method for learning a personal representation for individuals performing a self neuromodulation task, guided by functional MRI (fMRI)
The representation is learned by a self-supervised recurrent neural network, that predicts the Amygdala activity in the next fMRI frame given recent fMRI frames and is conditioned on the learned individual representation.
arXiv Detail & Related papers (2021-12-06T10:16:54Z) - Attend and Decode: 4D fMRI Task State Decoding Using Attention Models [2.6954666679827137]
We present a novel architecture called Brain Attend and Decode (BAnD)
BAnD uses residual convolutional neural networks for spatial feature extraction and self-attention mechanisms temporal modeling.
We achieve significant performance gain compared to previous works on a 7-task benchmark from the Human Connectome Project-Young Adult dataset.
arXiv Detail & Related papers (2020-04-10T21:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.