論文の概要: Centering Policy and Practice: Research Gaps around Usable Differential Privacy
- arxiv url: http://arxiv.org/abs/2406.12103v1
- Date: Mon, 17 Jun 2024 21:32:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 23:47:35.813225
- Title: Centering Policy and Practice: Research Gaps around Usable Differential Privacy
- Title(参考訳): 政策と実践の中心: 利用可能な差別的プライバシに関する研究ギャップ
- Authors: Rachel Cummings, Jayshree Sarathy,
- Abstract要約: 我々は、差分プライバシーは理論上はクリーンな定式化であるが、実際は重大な課題を提起していると論じている。
差分プライバシーの約束と現実世界のユーザビリティのギャップを埋めるために、研究者と実践者は協力しなければなりません。
- 参考スコア(独自算出の注目度): 12.340264479496375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a mathematically rigorous framework that has amassed a rich theoretical literature, differential privacy is considered by many experts to be the gold standard for privacy-preserving data analysis. Others argue that while differential privacy is a clean formulation in theory, it poses significant challenges in practice. Both perspectives are, in our view, valid and important. To bridge the gaps between differential privacy's promises and its real-world usability, researchers and practitioners must work together to advance policy and practice of this technology. In this paper, we outline pressing open questions towards building usable differential privacy and offer recommendations for the field, such as developing risk frameworks to align with user needs, tailoring communications for different stakeholders, modeling the impact of privacy-loss parameters, investing in effective user interfaces, and facilitating algorithmic and procedural audits of differential privacy systems.
- Abstract(参考訳): 数学的に厳格なフレームワークであり、豊富な理論文献を蓄積しているため、多くの専門家は差分プライバシーをプライバシー保護データ分析のゴールドスタンダードとみなしている。
差分プライバシーは理論上はクリーンな定式化であるが、実際は重大な課題を生じさせると主張する者もいる。
どちらの視点も、私たちの見解では、有効で重要なものです。
差分プライバシーの約束と現実世界のユーザビリティのギャップを埋めるために、研究者と実践者は協力してこの技術の政策と実践を進めなければならない。
本稿では,ユーザニーズに合わせてリスクフレームワークを開発すること,利害関係者のコミュニケーションを調整すること,プライバシロスパラメータの影響をモデル化すること,効果的なユーザインターフェースに投資すること,ディファレンシャルプライバシシステムのアルゴリズム的および手続き的監査を容易にすること,など,有用なディファレンシャルプライバシ構築に向けたオープンな質問を概説する。
関連論文リスト
- Differential Privacy Overview and Fundamental Techniques [63.0409690498569]
この章は、"Differential Privacy in Artificial Intelligence: From Theory to Practice"という本の一部である。
まず、データのプライバシ保護のためのさまざまな試みについて説明し、その失敗の場所と理由を強調した。
次に、プライバシ保護データ分析の領域を構成する重要なアクター、タスク、スコープを定義する。
論文 参考訳(メタデータ) (2024-11-07T13:52:11Z) - Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
強力なAIモデルによって、幅広いタスクでパフォーマンスが飛躍的に向上した。
プライバシの懸念は、さまざまなプライバシのリスクとAIモデルの脆弱性をカバーした、豊富な文献につながっている。
我々はこれらの調査論文の体系的なレビューを行い、GPAISにおけるプライバシーリスクの簡潔かつ有用な概観を提供する。
論文 参考訳(メタデータ) (2024-07-02T07:49:48Z) - Privacy-Preserving ECG Data Analysis with Differential Privacy: A Literature Review and A Case Study [1.1156009461711638]
本稿では、差分プライバシーにおける重要な概念の概要と、ECG分析への応用に関する文献レビューと議論について述べる。
論文の第2部では,6段階のプロセスを用いて不整脈データベース上で,差分プライベートなクエリリリースを実現する方法について検討する。
論文 参考訳(メタデータ) (2024-06-19T23:17:16Z) - GoldCoin: Grounding Large Language Models in Privacy Laws via Contextual Integrity Theory [44.297102658873726]
これまでの研究では、さまざまなプライバシー攻撃、防御、評価を狭義に定義されたパターンの中で探索することで、プライバシを研究する。
我々は,プライバシ違反を評価する司法法において,LLMを効果的に活用するための新しい枠組みであるGoldCoinを紹介した。
我々のフレームワークは、コンテキスト整合性の理論をブリッジとして活用し、関連するプライバシー法に基づく多数の合成シナリオを作成する。
論文 参考訳(メタデータ) (2024-06-17T02:27:32Z) - Experts-in-the-Loop: Establishing an Effective Workflow in Crafting
Privacy Q&A [0.0]
プライバシポリシをプライバシ質問応答(Q&A)ペアに変換する動的ワークフローを提案する。
そこで我々は,法の専門家と会話デザイナーの学際的なコラボレーションを促進する。
提案するワークフローは,プライバシQ&Aの構築を通じて継続的改善と監視の基盤となる。
論文 参考訳(メタデータ) (2023-11-18T20:32:59Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
差分プライバシ(DP)分野における現状と現状の方法論の詳細なレビューを行う。
論文のポイントとハイレベルな内容は,「認知プライバシ(DP:次のフロンティアへの挑戦)」の議論から生まれた。
この記事では、プライバシの領域におけるアルゴリズムおよび設計決定の基準点を提供することを目標とし、重要な課題と潜在的研究の方向性を強調します。
論文 参考訳(メタデータ) (2023-04-14T05:29:18Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。