Computing in the Life Sciences: From Early Algorithms to Modern AI
- URL: http://arxiv.org/abs/2406.12108v2
- Date: Wed, 19 Jun 2024 03:54:28 GMT
- Title: Computing in the Life Sciences: From Early Algorithms to Modern AI
- Authors: Samuel A. Donkor, Matthew E. Walsh, Alexander J. Titus,
- Abstract summary: This paper highlights key milestones and technological advancements through the historical development of computing in the life sciences.
The discussion includes the inception of computational models for biological processes, the advent of bioinformatics tools, and the integration of AI/ML in modern life sciences research.
Attention is given to AI-enabled tools used in the life sciences, such as scientific large language models and bio-AI tools, examining their capabilities, limitations, and impact to biological risk.
- Score: 45.74830585715129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computing in the life sciences has undergone a transformative evolution, from early computational models in the 1950s to the applications of artificial intelligence (AI) and machine learning (ML) seen today. This paper highlights key milestones and technological advancements through the historical development of computing in the life sciences. The discussion includes the inception of computational models for biological processes, the advent of bioinformatics tools, and the integration of AI/ML in modern life sciences research. Attention is given to AI-enabled tools used in the life sciences, such as scientific large language models and bio-AI tools, examining their capabilities, limitations, and impact to biological risk. This paper seeks to clarify and establish essential terminology and concepts to ensure informed decision-making and effective communication across disciplines.
Related papers
- Empowering Biomedical Discovery with AI Agents [15.125735219811268]
We envision "AI scientists" as systems capable of skeptical learning and reasoning.
Biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets.
AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
arXiv Detail & Related papers (2024-04-03T16:08:01Z) - EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning Applications [0.2826977330147589]
We propose a web-based end-to-end pipeline that is capable of preprocessing, training, evaluating, and visualizing machine learning models.
Our library assists in recognizing, classifying, clustering, and predicting a wide range of multi-modal, multi-sensor datasets.
arXiv Detail & Related papers (2024-03-27T02:24:38Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Generative AI has lowered the barriers to computational social sciences [3.313485776871956]
Generative artificial intelligence (AI) has revolutionized the field of computational social science.
This breakthrough carries profound implications for the realm of social sciences.
arXiv Detail & Related papers (2023-11-17T19:24:39Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
We review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade.
Recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning.
arXiv Detail & Related papers (2022-12-20T18:46:16Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - On Artificial Life and Emergent Computation in Physical Substrates [0.0]
We argue that the lens of artificial life offers valuable perspectives for the advancement of high-performance computing.
Two specific substrates are discussed in detail: biological neurons and ensembles of nanomagnets.
We conclude with a philosophical discussion on what we can learn from approaching computation with the curiosity inherent to the study of artificial life.
arXiv Detail & Related papers (2020-09-09T18:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.