Unusual charge density wave introduced by Janus structure in monolayer vanadium dichalcogenides
- URL: http://arxiv.org/abs/2406.12180v1
- Date: Tue, 18 Jun 2024 01:20:38 GMT
- Title: Unusual charge density wave introduced by Janus structure in monolayer vanadium dichalcogenides
- Authors: Ziqiang Xu, Yan Shao, Chun Huang, Genyu Hu, Shihao Hu, Zhi-Lin Li, Xiaoyu Hao, Yanhui Hou, Teng Zhang, Jin-An Shi, Chen Liu, Jia-Ou Wang, Wu Zhou, Jiadong Zhou, Wei Ji, Jingsi Qiao, Xu Wu, Hong-Jun Gao, Yeliang Wang,
- Abstract summary: symmetry of materials determines exotic quantum properties in transition metal dichalcogenides (TMDs) with charge density wave (CDW)
Breaking the inversion symmetry, the Janus structure, an artificially constructed lattice, provides an opportunity to tune the CDW states and the related properties.
Here, using surface selenization of VTe2, we fabricated monolayer Janus VTeSe.
With scanning tunneling microscopy, an unusual root13-root13 CDW state with threefold rotational symmetry breaking was observed and characterized.
- Score: 13.06647934747315
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: As a fundamental structural feature, the symmetry of materials determines the exotic quantum properties in transition metal dichalcogenides (TMDs) with charge density wave (CDW). Breaking the inversion symmetry, the Janus structure, an artificially constructed lattice, provides an opportunity to tune the CDW states and the related properties. However, limited by the difficulties in atomic-level fabrication and material stability, the experimental visualization of the CDW states in 2D TMDs with Janus structure is still rare. Here, using surface selenization of VTe2, we fabricated monolayer Janus VTeSe. With scanning tunneling microscopy, an unusual root13-root13 CDW state with threefold rotational symmetry breaking was observed and characterized. Combined with theoretical calculations, we find this CDW state can be attributed to the charge modulation in the Janus VTeSe, beyond the conventional electron-phonon coupling. Our findings provide a promising platform for studying the CDW states and artificially tuning the electronic properties toward the applications.
Related papers
- Emergent Kitaev materials in synthetic Fermi-Hubbard bilayers [49.1574468325115]
Bond-directional spin-spin interactions in a Fermi-Hubbard bilayer can be realized with ultracold fermions in Raman optical lattices.
We analyze the Fermi-liquid and Mott-insulating phases, highlighting a correspondence between Dirac and Majorana quasi-particles.
Our results establish that cold-atom quantum simulators based on Raman optical lattices can be a playground for extended Kitaev models.
arXiv Detail & Related papers (2025-04-22T10:07:56Z) - Electronic States and Mechanical Behaviors of Phosphorus Carbide Nanotubes -- Structural and Quantum Phase Transitions in a Quasi-one-dimensional Material [5.747465732334616]
mono-layer $PC_3$ -- identified in a previous letter to possess double Kagome bands'' -- exhibits a number of striking properties when rolled up into nanotubes.
Both armchair and $PC_3$NTs are stable room temperature and display a degenerate combination of Dirac and electronic flat bands at the Fermi level.
arXiv Detail & Related papers (2025-01-20T03:01:53Z) - Discovery of 2D Materials via Symmetry-Constrained Diffusion Model [1.0574989272033577]
We introduce a symmetry-constrained diffusion model (SCDM) that integrates space group symmetry into the generative process.
The model ensures adherence to symmetry principles, leading to the generation of 2,000 candidate structures.
The results highlight that incorporating symmetry constraints enhances the effectiveness of generated 2D materials.
arXiv Detail & Related papers (2024-12-24T13:03:33Z) - Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations [0.0]
We introduce a framework for embedding lattice symmetries in Neural Slater-Backflow-Jastrow wavefunction ansatzes.
We demonstrate how our model allows us to target the ground state and low-lying excited states.
arXiv Detail & Related papers (2024-06-13T13:01:50Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Antiferromagnetic bosonic $t$-$J$ models and their quantum simulation in tweezer arrays [0.0]
We propose an experimental scheme to realize bosonic t-J models via encoding the local Hilbert space in a set of three internal atomic or molecular states.
By engineering antiferromagnetic (AFM) couplings between spins, competition between charge motion and magnetic order similar to that in high-$T_c$ cuprates can be realized.
arXiv Detail & Related papers (2023-05-03T17:59:59Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Molecular formations and spectra due to electron correlations in
three-electron hybrid double-well qubits [0.0]
Wigner molecules (WMs) form in three-electron hybrid qubits based on GaAs asymmetric double quantum dots.
FCI calculations enable prediction of the energy spectra and the intrinsic spatial and spin structures of the many-body wave functions.
FCI methodology can be straightforwardly extended to treat valleytronic two-band Si/SiGe hybrid qubits.
arXiv Detail & Related papers (2022-04-05T14:28:14Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z) - Theory of cavity QED with 2D atomic arrays [0.0]
We develop a quantum optical formalism to treat a two-dimensional array of atoms placed in an optical cavity.
We show that the inhibited damping can lead to a favorable scaling of the optomechanical parameters of an atom-array membrane placed within a cavity.
arXiv Detail & Related papers (2020-06-02T23:01:07Z) - Double exceptional links in a three-dimensional dissipative cold atomic
gas [0.9239657838690226]
We explore the topological properties of non-Hermitian nodal-link semimetals with dissipative cold atoms in a three-dimensional optical lattice.
A non-Bloch theory is built to describe the corresponding lattice model which has anomalous bulk-boundary correspondence.
arXiv Detail & Related papers (2020-05-12T07:07:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.