Electronic States and Mechanical Behaviors of Phosphorus Carbide Nanotubes -- Structural and Quantum Phase Transitions in a Quasi-one-dimensional Material
- URL: http://arxiv.org/abs/2501.11239v2
- Date: Sun, 16 Feb 2025 19:56:34 GMT
- Title: Electronic States and Mechanical Behaviors of Phosphorus Carbide Nanotubes -- Structural and Quantum Phase Transitions in a Quasi-one-dimensional Material
- Authors: Shivam Sharma, Chenhaoyue Wang, Hsuan Ming Yu, Amartya S. Banerjee,
- Abstract summary: mono-layer $PC_3$ -- identified in a previous letter to possess double Kagome bands'' -- exhibits a number of striking properties when rolled up into nanotubes.<n>Both armchair and $PC_3$NTs are stable room temperature and display a degenerate combination of Dirac and electronic flat bands at the Fermi level.
- Score: 5.747465732334616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quasi-one-dimensional (1D) materials can manifest exotic electronic properties in manners that are distinct from the bulk phase or other low-dimensional systems. Helical symmetries in such materials -- e.g., nanotubes with intrinsic or applied twist -- can simultaneously lead to strong electronic correlation and anomalous transport behavior. However, these materials remain underexplored, in part due to computational challenges. Using specialized symmetry-adapted first-principles calculations, we show that mono-layer $P_2C_3$ -- identified in a previous letter to possess ``double Kagome bands'' -- exhibits a number of striking properties when rolled up into phosphorous carbide nanotubes ($P_2C_3$NTs). Both armchair and zigzag $P_2C_3$NTs are stable at room temperature and display a degenerate combination of Dirac points and electronic flat bands at the Fermi level. Notably, these flat bands are highly resilient to elastic deformations. Large strains can transform the nanotube structure from honeycomb-kagome to ``brick-wall'', and trigger multiple quantum phase transitions. Edge states in $P_2C_3$NTs, spin-degeneracy lifting induced by vacancies and dopants, and strain-tunable magnetism are also discussed.
Related papers
- Emergent Kitaev materials in synthetic Fermi-Hubbard bilayers [49.1574468325115]
Bond-directional spin-spin interactions in a Fermi-Hubbard bilayer can be realized with ultracold fermions in Raman optical lattices.
We analyze the Fermi-liquid and Mott-insulating phases, highlighting a correspondence between Dirac and Majorana quasi-particles.
Our results establish that cold-atom quantum simulators based on Raman optical lattices can be a playground for extended Kitaev models.
arXiv Detail & Related papers (2025-04-22T10:07:56Z) - Strain effect on optical properties and quantum weight of 2D magnetic topological insulators MnBi$_2$X$_4$ (X = Te, Se, S) [1.5249435285717095]
We investigate the effects of strain on the magnetic and optical properties of 2D topological insulators MnBi$X$_4$ (X = Te, Se, S)
Our results indicate that biaxial strain enhances the Mn magnetic moment, while uniaxial strains reduce it.
By analyzing chemical bonds under various strain directions, we elucidate how the intrinsic ductile fracture behavior of MnBi$$X$_4$ could impact fabrication protocols and structural stability.
arXiv Detail & Related papers (2025-04-15T05:18:21Z) - Strain induced topological phase transitions in split and line graphs of bipartite lattices featuring flat bands [7.0566221827695506]
We study a class of 2D lattices that generically support flat bands and focus on the effects of strain on their electronic and topological properties.<n>In the absence of strain, the introduction of spin-orbit coupling induces a bulk excitation gap, which transforms flat bands into quasi-flat bands with topologically nontrivial characteristics.<n>Our results highlight the potential of strain engineering as a versatile tool for manipulating electronic and topological phases in a wide variety of 2D materials.
arXiv Detail & Related papers (2025-01-20T23:16:37Z) - Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.<n>This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Ab-Initio Calculations of Nonlinear Susceptibility and Multi-Phonon Mixing Processes in a 2DEG-Piezoelectric Heterostructure [41.94295877935867]
Solid-state elastic-wave phonons are a promising platform for a wide range of quantum information applications.
We propose a general architecture using piezoelectric-semiconductor heterostructures.
We show that, for this system, the strong third-order nonlinearity could enable single-phonon Kerr shift in an acoustic cavity.
arXiv Detail & Related papers (2024-02-01T03:34:41Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Carbon Kagome Nanotubes -- quasi-one-dimensional nanostructures with
flat bands [9.634821776480532]
We introduce carbon Kagome nanotubes -- a new allotrope of carbon formed by rolling up sheets of Kagome graphene.
Ab initio molecular dynamics simulations indicate that both types of CKNTs are likely to exist as stable structures at room temperature.
arXiv Detail & Related papers (2023-01-24T18:16:41Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Conductivity and size quantization effects in semiconductor
$\delta$-layer systems [0.0]
We present an open-system quantum-mechanical 3D real-space study of the conduction band structure and conductive properties of two semiconductor systems.
phosphorus $delta$-layers in silicon and the corresponding $delta$-layer tunnel junctions are studied.
arXiv Detail & Related papers (2022-09-14T22:20:49Z) - Stable bipolarons in open quantum systems [0.05863360388454259]
We study the transport properties of materials characterized by strong electron-phonon coupling, in contact with a dissipative environment.
We combine the non-Markovian hierarchy of pure states method and the Markovian quantum jumps method with the newly introduced purified density-matrix renormalization group.
Surprisingly, our results show that in the metallic phase dissipation localizes the bipolarons, which is reminiscent of an indirect quantum Zeno effect.
arXiv Detail & Related papers (2022-07-17T17:40:04Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Magnetic and geometric effects on the electronic transport of metallic
nanotubes [122.46389612035273]
We present a numerical study of the electronic transport properties of metallic nanotubes deviating from the cylindrical form.
It is found that the nanotube may be used as an energy high-pass filter for electrons.
It is also shown that the device can be used to tune the angular momentum of transmitted electrons.
arXiv Detail & Related papers (2021-01-11T16:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.