GMP-AR: Granularity Message Passing and Adaptive Reconciliation for Temporal Hierarchy Forecasting
- URL: http://arxiv.org/abs/2406.12242v1
- Date: Tue, 18 Jun 2024 03:33:03 GMT
- Title: GMP-AR: Granularity Message Passing and Adaptive Reconciliation for Temporal Hierarchy Forecasting
- Authors: Fan Zhou, Chen Pan, Lintao Ma, Yu Liu, James Zhang, Jun Zhou, Hongyuan Mei, Weitao Lin, Zi Zhuang, Wenxin Ning, Yunhua Hu, Siqiao Xue,
- Abstract summary: Time series forecasts of different temporal granularity are widely used in real-world applications.
We propose a novel granularity message-passing mechanism (GMP) that leverages temporal hierarchy information to improve forecasting performance.
We also introduce an optimization module to achieve task-based targets while adhering to more real-world constraints.
- Score: 20.56839345239421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasts of different temporal granularity are widely used in real-world applications, e.g., sales prediction in days and weeks for making different inventory plans. However, these tasks are usually solved separately without ensuring coherence, which is crucial for aligning downstream decisions. Previous works mainly focus on ensuring coherence with some straightforward methods, e.g., aggregation from the forecasts of fine granularity to the coarse ones, and allocation from the coarse granularity to the fine ones. These methods merely take the temporal hierarchical structure to maintain coherence without improving the forecasting accuracy. In this paper, we propose a novel granularity message-passing mechanism (GMP) that leverages temporal hierarchy information to improve forecasting performance and also utilizes an adaptive reconciliation (AR) strategy to maintain coherence without performance loss. Furthermore, we introduce an optimization module to achieve task-based targets while adhering to more real-world constraints. Experiments on real-world datasets demonstrate that our framework (GMP-AR) achieves superior performances on temporal hierarchical forecasting tasks compared to state-of-the-art methods. In addition, our framework has been successfully applied to a real-world task of payment traffic management in Alipay by integrating with the task-based optimization module.
Related papers
- PMM-Net: Single-stage Multi-agent Trajectory Prediction with Patching-based Embedding and Explicit Modal Modulation [6.793915571620126]
In this letter, we aim to explore a distinct formulation for multi-agent trajectory prediction framework.
We propose a patching-based temporal feature extraction module and a graph-based social feature extraction module.
We present a novel method based on explicit modality modulation to integrate temporal and social features, thereby constructing an efficient single-stage inference pipeline.
arXiv Detail & Related papers (2024-10-25T13:16:27Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
arXiv Detail & Related papers (2024-08-26T16:11:53Z) - Progressive Conservative Adaptation for Evolving Target Domains [76.9274842289221]
Conventional domain adaptation typically transfers knowledge from a source domain to a stationary target domain.
Restoring and adapting to such target data results in escalating computational and resource consumption over time.
We propose a simple yet effective approach, termed progressive conservative adaptation (PCAda)
arXiv Detail & Related papers (2024-02-07T04:11:25Z) - GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks [24.323017830938394]
This work aims to address challenges by introducing a pre-training framework that seamlessly integrates with baselines and enhances their performance.
The framework is built upon two key designs: (i) We propose a.
apple-to-apple mask autoencoder as a pre-training model for learning-temporal dependencies.
These modules are specifically designed to capture intra-temporal customized representations and semantic- and inter-cluster relationships.
arXiv Detail & Related papers (2023-11-07T02:36:24Z) - Local-Global Temporal Difference Learning for Satellite Video
Super-Resolution [55.69322525367221]
We propose to exploit the well-defined temporal difference for efficient and effective temporal compensation.
To fully utilize the local and global temporal information within frames, we systematically modeled the short-term and long-term temporal discrepancies.
Rigorous objective and subjective evaluations conducted across five mainstream video satellites demonstrate that our method performs favorably against state-of-the-art approaches.
arXiv Detail & Related papers (2023-04-10T07:04:40Z) - SLOTH: Structured Learning and Task-based Optimization for Time Series
Forecasting on Hierarchies [16.12477042879166]
The hierarchical time series (HTS) forecasting includes two sub-tasks, i.e., forecasting and reconciliation.
In this paper, we propose two novel tree-based feature integration mechanisms, i.e., top-down convolution and bottom-up attention.
Unlike most previous reconciliation methods which either rely on strong assumptions or focus on coherent constraints only, we utilize deep neural optimization networks.
arXiv Detail & Related papers (2023-02-11T10:50:33Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints.
The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past.
We show that our proposed scheme consistently improves the prediction performance of several existing methods.
arXiv Detail & Related papers (2022-04-12T14:59:48Z) - APS: Active Pretraining with Successor Features [96.24533716878055]
We show that by reinterpreting and combining successorcitepHansenFast with non entropy, the intractable mutual information can be efficiently optimized.
The proposed method Active Pretraining with Successor Feature (APS) explores the environment via non entropy, and the explored data can be efficiently leveraged to learn behavior.
arXiv Detail & Related papers (2021-08-31T16:30:35Z) - Temporal Context Aggregation Network for Temporal Action Proposal
Refinement [93.03730692520999]
Temporal action proposal generation is a challenging yet important task in the video understanding field.
Current methods still suffer from inaccurate temporal boundaries and inferior confidence used for retrieval.
We propose TCANet to generate high-quality action proposals through "local and global" temporal context aggregation.
arXiv Detail & Related papers (2021-03-24T12:34:49Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
We propose a machine learning approach for forecasting hierarchical time series.
Forecast reconciliation is the process of adjusting forecasts to make them coherent across the hierarchy.
We exploit the ability of a deep neural network to extract information capturing the structure of the hierarchy.
arXiv Detail & Related papers (2020-05-31T22:26:16Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.