Mitigate Negative Transfer with Similarity Heuristic Lifelong Prompt Tuning
- URL: http://arxiv.org/abs/2406.12251v1
- Date: Tue, 18 Jun 2024 03:57:49 GMT
- Title: Mitigate Negative Transfer with Similarity Heuristic Lifelong Prompt Tuning
- Authors: Chenyuan Wu, Gangwei Jiang, Defu Lian,
- Abstract summary: We present the Similarity Heuristic Lifelong Prompt Tuning (SH) framework.
SH partitions tasks into two distinct subsets by harnessing a learnable similarity metric.
Our experiments shows that SH outperforms state-of-the-art techniques in lifelong learning benchmarks.
- Score: 26.949872705635084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lifelong prompt tuning has significantly advanced parameter-efficient lifelong learning with its efficiency and minimal storage demands on various tasks. Our empirical studies, however, highlights certain transferability constraints in the current methodologies: a universal algorithm that guarantees consistent positive transfer across all tasks is currently unattainable, especially when dealing dissimilar tasks that may engender negative transfer. Identifying the misalignment between algorithm selection and task specificity as the primary cause of negative transfer, we present the Similarity Heuristic Lifelong Prompt Tuning (SHLPT) framework. This innovative strategy partitions tasks into two distinct subsets by harnessing a learnable similarity metric, thereby facilitating fruitful transfer from tasks regardless of their similarity or dissimilarity. Additionally, SHLPT incorporates a parameter pool to combat catastrophic forgetting effectively. Our experiments shows that SHLPT outperforms state-of-the-art techniques in lifelong learning benchmarks and demonstrates robustness against negative transfer in diverse task sequences.
Related papers
- Enabling Asymmetric Knowledge Transfer in Multi-Task Learning with Self-Auxiliaries [4.031100721019478]
We investigate asymmetric task relationships, where knowledge transfer aids the learning of certain tasks while hindering the learning of others.
We propose an optimisation strategy that includes additional cloned tasks named self-auxiliaries into the learning process to flexibly transfer knowledge between tasks asymmetrically.
We demonstrate that asymmetric knowledge transfer provides substantial improvements in performance compared to existing multi-task optimisation strategies on benchmark computer vision problems.
arXiv Detail & Related papers (2024-10-21T10:57:25Z) - Disentangling and Mitigating the Impact of Task Similarity for Continual Learning [1.3597551064547502]
Continual learning of partially similar tasks poses a challenge for artificial neural networks.
High input feature similarity coupled with low readout similarity is catastrophic for both knowledge transfer and retention.
Weight regularization based on the Fisher information metric significantly improves retention, regardless of task similarity.
arXiv Detail & Related papers (2024-05-30T16:40:07Z) - Generalization Performance of Transfer Learning: Overparameterized and
Underparameterized Regimes [61.22448274621503]
In real-world applications, tasks often exhibit partial similarity, where certain aspects are similar while others are different or irrelevant.
Our study explores various types of transfer learning, encompassing two options for parameter transfer.
We provide practical guidelines for determining the number of features in the common and task-specific parts for improved generalization performance.
arXiv Detail & Related papers (2023-06-08T03:08:40Z) - Task Difficulty Aware Parameter Allocation & Regularization for Lifelong
Learning [20.177260510548535]
We propose the Allocation & Regularization (PAR), which adaptively select an appropriate strategy for each task from parameter allocation and regularization based on its learning difficulty.
Our method is scalable and significantly reduces the model's redundancy while improving the model's performance.
arXiv Detail & Related papers (2023-04-11T15:38:21Z) - ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning [59.08197876733052]
Auxiliary-Task Learning (ATL) aims to improve the performance of the target task by leveraging the knowledge obtained from related tasks.
Sometimes, learning multiple tasks simultaneously results in lower accuracy than learning only the target task, known as negative transfer.
ForkMerge is a novel approach that periodically forks the model into multiple branches, automatically searches the varying task weights.
arXiv Detail & Related papers (2023-01-30T02:27:02Z) - Transferability Estimation Based On Principal Gradient Expectation [68.97403769157117]
Cross-task transferability is compatible with transferred results while keeping self-consistency.
Existing transferability metrics are estimated on the particular model by conversing source and target tasks.
We propose Principal Gradient Expectation (PGE), a simple yet effective method for assessing transferability across tasks.
arXiv Detail & Related papers (2022-11-29T15:33:02Z) - Identifying Suitable Tasks for Inductive Transfer Through the Analysis
of Feature Attributions [78.55044112903148]
We use explainability techniques to predict whether task pairs will be complementary, through comparison of neural network activation between single-task models.
Our results show that, through this approach, it is possible to reduce training time by up to 83.5% at a cost of only 0.034 reduction in positive-class F1 on the TREC-IS 2020-A dataset.
arXiv Detail & Related papers (2022-02-02T15:51:07Z) - Task Uncertainty Loss Reduce Negative Transfer in Asymmetric Multi-task
Feature Learning [0.0]
Multi-task learning (MTL) can improve task performance overall relative to single-task learning (STL), but can hide negative transfer (NT)
Asymmetric multitask feature learning (AMTFL) is an approach that tries to address this by allowing tasks with higher loss values to have smaller influence on feature representations for learning other tasks.
We present examples of NT in two datasets (image recognition and pharmacogenomics) and tackle this challenge by using aleatoric homoscedastic uncertainty to capture the relative confidence between tasks, and set weights for task loss.
arXiv Detail & Related papers (2020-12-17T13:30:45Z) - Uniform Priors for Data-Efficient Transfer [65.086680950871]
We show that features that are most transferable have high uniformity in the embedding space.
We evaluate the regularization on its ability to facilitate adaptation to unseen tasks and data.
arXiv Detail & Related papers (2020-06-30T04:39:36Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.