Research on Dangerous Flight Weather Prediction based on Machine Learning
- URL: http://arxiv.org/abs/2406.12298v1
- Date: Tue, 18 Jun 2024 06:08:15 GMT
- Title: Research on Dangerous Flight Weather Prediction based on Machine Learning
- Authors: Haoxing Liu, Renjie Xie, Haoshen Qin, Yizhou Li,
- Abstract summary: The impact of hazardous weather on flight safety is critical.
How to effectively use meteorological data to improve the early warning capability of flight dangerous weather is the primary task of aviation meteorological services.
In this work, support vector machine (SVM) models are used to predict hazardous flight weather.
- Score: 4.352963801845065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the continuous expansion of the scale of air transport, the demand for aviation meteorological support also continues to grow. The impact of hazardous weather on flight safety is critical. How to effectively use meteorological data to improve the early warning capability of flight dangerous weather and ensure the safe flight of aircraft is the primary task of aviation meteorological services. In this work, support vector machine (SVM) models are used to predict hazardous flight weather, especially for meteorological conditions with high uncertainty such as storms and turbulence. SVM is a supervised learning method that distinguishes between different classes of data by finding optimal decision boundaries in a high-dimensional space. In order to meet the needs of this study, we chose the radial basis function (RBF) as the kernel function, which helps to deal with nonlinear problems and enables the model to better capture complex meteorological data structures. During the model training phase, we used historical meteorological observations from multiple weather stations, including temperature, humidity, wind speed, wind direction, and other meteorological indicators closely related to flight safety. From this data, the SVM model learns how to distinguish between normal and dangerous flight weather conditions.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Research on Flight Accidents Prediction based Back Propagation Neural Network [0.0]
In this work, a model based on back-propagation neural network was used to predict flight accidents.
By collecting historical flight data, we trained a backpropaga-tion neural network model to identify potential accident risks.
Experimental analysis shows that the model can effectively predict flight accidents with high accuracy and reliability.
arXiv Detail & Related papers (2024-06-20T02:51:27Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - A Distributed Approach to Meteorological Predictions: Addressing Data
Imbalance in Precipitation Prediction Models through Federated Learning and
GANs [0.0]
classification of weather data involves categorizing meteorological phenomena into classes, thereby facilitating nuanced analyses and precise predictions.
It's imperative that classification algorithms proficiently navigate challenges such as data imbalances.
Data augmentation techniques can improve the model's accuracy in classifying rare but critical weather events.
arXiv Detail & Related papers (2023-10-19T21:28:20Z) - Prompt Federated Learning for Weather Forecasting: Toward Foundation
Models on Meteorological Data [37.549578998407675]
To tackle the global climate challenge, it urgently needs to develop a collaborative platform for comprehensive weather forecasting on large-scale meteorological data.
This paper develops a foundation model across regions of understanding complex meteorological data and providing weather forecasting.
A novel prompt learning mechanism has been adopted to satisfy low-resourced sensors' communication and computational constraints.
arXiv Detail & Related papers (2023-01-22T16:47:05Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
The unprecedented increase of commercial airlines and private jets over the past ten years presents a challenge for air traffic control.
Precise flight trajectory prediction is of great significance in air transportation management, which contributes to the decision-making for safe and orderly flights.
We propose a phased flight trajectory prediction framework that can outperform state-of-the-art methods for flight trajectory prediction for large passenger/transport airplanes.
arXiv Detail & Related papers (2022-03-17T02:16:02Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - A Machine Learning Approach to Safer Airplane Landings: Predicting
Runway Conditions using Weather and Flight Data [0.0]
Snow and ice on runway surfaces reduces tire-pavement friction needed for retardation and directional control.
XGBoost is used to create a combined runway assessment system.
arXiv Detail & Related papers (2021-07-01T11:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.