Research on Flight Accidents Prediction based Back Propagation Neural Network
- URL: http://arxiv.org/abs/2406.13954v1
- Date: Thu, 20 Jun 2024 02:51:27 GMT
- Title: Research on Flight Accidents Prediction based Back Propagation Neural Network
- Authors: Haoxing Liu, Fangzhou Shen, Haoshen Qin and, Fanru Gao,
- Abstract summary: In this work, a model based on back-propagation neural network was used to predict flight accidents.
By collecting historical flight data, we trained a backpropaga-tion neural network model to identify potential accident risks.
Experimental analysis shows that the model can effectively predict flight accidents with high accuracy and reliability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the rapid development of civil aviation and the significant improvement of people's living standards, taking an air plane has become a common and efficient way of travel. However, due to the flight characteris-tics of the aircraft and the sophistication of the fuselage structure, flight de-lays and flight accidents occur from time to time. In addition, the life risk factor brought by aircraft after an accident is also the highest among all means of transportation. In this work, a model based on back-propagation neural network was used to predict flight accidents. By collecting historical flight data, including a variety of factors such as meteorological conditions, aircraft technical condition, and pilot experience, we trained a backpropaga-tion neural network model to identify potential accident risks. In the model design, a multi-layer perceptron structure is used to optimize the network performance by adjusting the number of hidden layer nodes and the learning rate. Experimental analysis shows that the model can effectively predict flight accidents with high accuracy and reliability.
Related papers
- Accident Impact Prediction based on a deep convolutional and recurrent neural network model [0.24999074238880484]
This study proposes a deep neural network model known as the cascade model to predict post-accident impacts.
It leverages readily available real-world data from Los Angeles County to predict post-accident impacts.
The results reveal a higher precision in predicting minimal impacts and a higher recall in predicting more significant impacts.
arXiv Detail & Related papers (2024-11-12T04:27:06Z) - Research on Dangerous Flight Weather Prediction based on Machine Learning [4.352963801845065]
The impact of hazardous weather on flight safety is critical.
How to effectively use meteorological data to improve the early warning capability of flight dangerous weather is the primary task of aviation meteorological services.
In this work, support vector machine (SVM) models are used to predict hazardous flight weather.
arXiv Detail & Related papers (2024-06-18T06:08:15Z) - Learning Generative Models for Climbing Aircraft from Radar Data [0.0]
This paper proposes a generative model for climbing aircraft in which the standard Base of Aircraft Data (BADA) model is enriched by a functional correction to the thrust that is learned from data.
The method offers three features: predictions of the arrival time with 66.3% less error when compared to BADA; generated trajectories that are realistic when compared to test data.
arXiv Detail & Related papers (2023-09-26T13:53:53Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
We propose a probabilistic model that can learn the variability from procedural data and flight tracks collected from radar surveillance data.
We show how a pairwise model can be used to generate traffic involving an arbitrary number of aircraft.
arXiv Detail & Related papers (2023-03-17T13:58:06Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
The unprecedented increase of commercial airlines and private jets over the past ten years presents a challenge for air traffic control.
Precise flight trajectory prediction is of great significance in air transportation management, which contributes to the decision-making for safe and orderly flights.
We propose a phased flight trajectory prediction framework that can outperform state-of-the-art methods for flight trajectory prediction for large passenger/transport airplanes.
arXiv Detail & Related papers (2022-03-17T02:16:02Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting [65.498967509424]
Air turbulence forecasting can help airlines avoid hazardous turbulence, guide routes that keep passengers safe, maximize efficiency, reduce costs.
Traditional forecasting approaches rely on painstakingly customized turbulence indexes, which are less effective in dynamic and complex weather conditions.
We propose a machine learning based turbulence forecasting system due to two challenges: (1) Complex-temporal correlations, and (2) scarcity, very limited turbulence labels can be obtained.
arXiv Detail & Related papers (2020-10-26T21:14:15Z) - Flight Time Prediction for Fuel Loading Decisions with a Deep Learning
Approach [3.285168337194676]
Airlines are constantly seeking new technologies and optimizing flight operations to reduce fuel consumption.
Excess fuel is loaded by dispatchers and (or) pilots to handle fuel consumption uncertainties.
We develop a novel spatial weighted recurrent neural network model to provide better flight time predictions.
arXiv Detail & Related papers (2020-05-12T11:05:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.