論文の概要: PruningBench: A Comprehensive Benchmark of Structural Pruning
- arxiv url: http://arxiv.org/abs/2406.12315v2
- Date: Fri, 28 Jun 2024 17:03:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 19:11:01.310354
- Title: PruningBench: A Comprehensive Benchmark of Structural Pruning
- Title(参考訳): PruningBench: 構造的プルーニングの総合ベンチマーク
- Authors: Haoling Li, Changhao Li, Mengqi Xue, Gongfan Fang, Sheng Zhou, Zunlei Feng, Huiqiong Wang, Yong Wang, Lechao Cheng, Mingli Song, Jie Song,
- Abstract要約: textitPruningBenchと呼ばれる、構造的プルーニングのための最初の包括的なベンチマークを提示する。
PruningBenchは、多様な構造的プルーニング技術の有効性を評価するために、統一的で一貫したフレームワークを使用している。
将来の刈り取り方法の実装を容易にするための実装が容易なインターフェースを提供し、その後の研究者が自身の作業をリーダボードに組み込めるようにします。
- 参考スコア(独自算出の注目度): 50.23493036025595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structural pruning has emerged as a promising approach for producing more efficient models. Nevertheless, the community suffers from a lack of standardized benchmarks and metrics, leaving the progress in this area not fully comprehended. To fill this gap, we present the first comprehensive benchmark, termed \textit{PruningBench}, for structural pruning. PruningBench showcases the following three characteristics: 1) PruningBench employs a unified and consistent framework for evaluating the effectiveness of diverse structural pruning techniques; 2) PruningBench systematically evaluates 16 existing pruning methods, encompassing a wide array of models (e.g., CNNs and ViTs) and tasks (e.g., classification and detection); 3) PruningBench provides easily implementable interfaces to facilitate the implementation of future pruning methods, and enables the subsequent researchers to incorporate their work into our leaderboards. We provide an online pruning platform http://pruning.vipazoo.cn for customizing pruning tasks and reproducing all results in this paper. Codes will be made publicly on https://github.com/HollyLee2000/PruningBench.
- Abstract(参考訳): より効率的なモデルを作成するための有望なアプローチとして、構造的プルーニングが登場している。
それでも、コミュニティは標準化されたベンチマークとメトリクスの欠如に悩まされており、この分野の進歩は完全には理解されていない。
このギャップを埋めるために、構造的プルーニングのための最初の包括的なベンチマークである「textit{PruningBench}」を提示する。
PruningBench氏は以下の3つの特徴を紹介している。
1)PruningBenchは、多様な構造的プルーニング手法の有効性を評価するために、統一的で一貫した枠組みを採用している。
2)PruningBenchは、16の既存プルーニング手法を体系的に評価し、幅広いモデル(例えば、CNN、ViT)とタスク(例えば、分類と検出)を包含する。
3) PruningBenchは、将来のプルーニングメソッドの実装を容易にするための、実装が容易なインターフェースを提供する。
オンラインプルーニングプラットフォーム http://pruning.vipazoo.cn で、プルーニングタスクをカスタマイズし、すべての結果をこの論文で再現する。
コードはhttps://github.com/HollyLee2000/PruningBench.comで公開される。
関連論文リスト
- One-cycle Structured Pruning with Stability Driven Structure Search [20.18712941647407]
既存の構造化プルーニングは、しばしば重い計算を必要とする多段階の訓練手順を必要とする。
モデル性能を損なうことなく, 一サイクル構造化プルーニングのための効率的なフレームワークを提案する。
本手法は, 訓練時間において, 最も効率的な刈り出しフレームワークの1つでありながら, 最先端の精度を実現する。
論文 参考訳(メタデータ) (2025-01-23T07:46:48Z) - PPTAgent: Generating and Evaluating Presentations Beyond Text-to-Slides [51.88536367177796]
そこで本研究では,人案に触発された2段階の編集手法を提案し,プレゼンテーションを自動的に生成する。
PWTAgentはまず参照を分析し、スライドレベルの関数型とコンテンツスキーマを抽出し、選択した参照スライドに基づいて編集アクションを生成する。
PWTAgentは、既存の3次元のプレゼンテーション生成方法よりも大幅に優れています。
論文 参考訳(メタデータ) (2025-01-07T16:53:01Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
優れたパフォーマンスの鍵は、完全なモダリティアライメントではなく、有意義な潜在モダリティ構造にある、と我々は主張する。
具体的には,1)モダリティ内正規化のための深い特徴分離損失,2)モダリティ間正規化のためのブラウン橋損失,3)モダリティ内正規化およびモダリティ間正規化のための幾何学的整合損失を設計する。
論文 参考訳(メタデータ) (2023-03-10T14:38:49Z) - Benchopt: Reproducible, efficient and collaborative optimization
benchmarks [67.29240500171532]
Benchoptは、機械学習で最適化ベンチマークを自動化、再生、公開するためのフレームワークである。
Benchoptは実験を実行、共有、拡張するための既製のツールを提供することで、コミュニティのベンチマークを簡単にする。
論文 参考訳(メタデータ) (2022-06-27T16:19:24Z) - Dual Path Structural Contrastive Embeddings for Learning Novel Objects [6.979491536753043]
近年の研究では、優れた特徴空間の情報を取得することが、少数のタスクにおいて良好なパフォーマンスを達成するための効果的な解決法であることが示されている。
特徴表現と分類器を学習するタスクを分離する,単純だが効果的なパラダイムを提案する。
提案手法は, インダクティブ推論とトランスダクティブ推論のいずれにおいても, 標準および一般化された少数ショット問題に対して有望な結果が得られる。
論文 参考訳(メタデータ) (2021-12-23T04:43:31Z) - MLPruning: A Multilevel Structured Pruning Framework for
Transformer-based Models [78.45898846056303]
プルーニングは、大きな自然言語処理モデルに関連するメモリフットプリントと計算コストを削減する効果的な方法である。
我々は,頭部刈り込み,行刈り,ブロックワイズ刈りという3つの異なるレベルの構造化刈り込みを利用する,新しいマルチレベル構造化刈り込みフレームワークを開発した。
論文 参考訳(メタデータ) (2021-05-30T22:00:44Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
局所的な特徴とロバストな推定アルゴリズムの包括的なベンチマークを導入する。
パイプラインのモジュール構造は、さまざまなメソッドの容易な統合、構成、組み合わせを可能にします。
適切な設定で、古典的な解決策は依然として芸術の知覚された状態を上回る可能性があることを示す。
論文 参考訳(メタデータ) (2020-03-03T15:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。