XXLTraffic: Expanding and Extremely Long Traffic Dataset for Ultra-Dynamic Forecasting Challenges
- URL: http://arxiv.org/abs/2406.12693v1
- Date: Tue, 18 Jun 2024 15:06:22 GMT
- Title: XXLTraffic: Expanding and Extremely Long Traffic Dataset for Ultra-Dynamic Forecasting Challenges
- Authors: Du Yin, Hao Xue, Arian Prabowo, Shuang Ao, Flora Salim,
- Abstract summary: XXLTraffic is the largest available public traffic dataset with the longest timespan and increasing number of sensor nodes.
Our dataset supplements existing-temporal data resources and leads to new research directions in this domain.
- Score: 3.7509821052818118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic forecasting is crucial for smart cities and intelligent transportation initiatives, where deep learning has made significant progress in modeling complex spatio-temporal patterns in recent years. However, current public datasets have limitations in reflecting the ultra-dynamic nature of real-world scenarios, characterized by continuously evolving infrastructures, varying temporal distributions, and temporal gaps due to sensor downtimes or changes in traffic patterns. These limitations inevitably restrict the practical applicability of existing traffic forecasting datasets. To bridge this gap, we present XXLTraffic, the largest available public traffic dataset with the longest timespan and increasing number of sensor nodes over the multiple years observed in the data, curated to support research in ultra-dynamic forecasting. Our benchmark includes both typical time-series forecasting settings with hourly and daily aggregated data and novel configurations that introduce gaps and down-sample the training size to better simulate practical constraints. We anticipate the new XXLTraffic will provide a fresh perspective for the time-series and traffic forecasting communities. It would also offer a robust platform for developing and evaluating models designed to tackle ultra-dynamic and extremely long forecasting problems. Our dataset supplements existing spatio-temporal data resources and leads to new research directions in this domain.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Deep Temporal Deaggregation: Large-Scale Spatio-Temporal Generative Models [5.816964541847194]
We propose a transformer-based diffusion model, TDDPM, for time-series which outperforms and scales substantially better than state-of-the-art.
This is evaluated in a new comprehensive benchmark across several sequence lengths, standard datasets, and evaluation measures.
arXiv Detail & Related papers (2024-06-18T09:16:11Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - Spatiotemporal-Linear: Towards Universal Multivariate Time Series
Forecasting [10.404951989266191]
We introduce the Spatio-Temporal- Linear (STL) framework.
STL seamlessly integrates time-embedded and spatially-informed bypasses to augment the Linear-based architecture.
Empirical evidence highlights STL's prowess, outpacing both Linear and Transformer benchmarks across varied observation and prediction durations and datasets.
arXiv Detail & Related papers (2023-12-22T17:46:34Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
We propose TrendGCN to address the challenge of balancing dynamics and robustness.
Our model simultaneously incorporates spatial (node-wise) embeddings and temporal (time-wise) embeddings to account for heterogeneous space-and-time convolutions.
Compared with traditional approaches that handle step-wise predictive errors independently, our approach can produce more realistic and robust forecasts.
arXiv Detail & Related papers (2022-08-05T09:36:55Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.