Federated Learning with Limited Node Labels
- URL: http://arxiv.org/abs/2406.12435v1
- Date: Tue, 18 Jun 2024 09:30:10 GMT
- Title: Federated Learning with Limited Node Labels
- Authors: Bisheng Tang, Xiaojun Chen, Shaopu Wang, Yuexin Xuan, Zhendong Zhao,
- Abstract summary: Subgraph federated learning (SFL) is a research methodology that has gained significant attention.
We present a novel SFL framework called FedMpa that aims to learn cross-subgraph node representations.
Our experiments on six graph datasets demonstrate that FedMpa is highly effective in node classification.
- Score: 3.738399857803053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subgraph federated learning (SFL) is a research methodology that has gained significant attention for its potential to handle distributed graph-structured data. In SFL, the local model comprises graph neural networks (GNNs) with a partial graph structure. However, some SFL models have overlooked the significance of missing cross-subgraph edges, which can lead to local GNNs being unable to message-pass global representations to other parties' GNNs. Moreover, existing SFL models require substantial labeled data, which limits their practical applications. To overcome these limitations, we present a novel SFL framework called FedMpa that aims to learn cross-subgraph node representations. FedMpa first trains a multilayer perceptron (MLP) model using a small amount of data and then propagates the federated feature to the local structures. To further improve the embedding representation of nodes with local subgraphs, we introduce the FedMpae method, which reconstructs the local graph structure with an innovation view that applies pooling operation to form super-nodes. Our extensive experiments on six graph datasets demonstrate that FedMpa is highly effective in node classification. Furthermore, our ablation experiments verify the effectiveness of FedMpa.
Related papers
- Federated Graph Learning with Structure Proxy Alignment [43.13100155569234]
Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners.
We propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space.
Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification.
arXiv Detail & Related papers (2024-08-18T07:32:54Z) - FedTAD: Topology-aware Data-free Knowledge Distillation for Subgraph Federated Learning [12.834423184614849]
Subgraph federated learning (subgraph-FL) facilitates the collaborative training of graph neural networks (GNNs) by multi-client subgraphs.
node and topology variation leads to significant differences in the class-wise knowledge reliability of multiple local GNNs.
We propose topology-aware data-free knowledge distillation technology (FedTAD) to enhance reliable knowledge transfer from the local model to the global model.
arXiv Detail & Related papers (2024-04-22T10:19:02Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
We propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module.
For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information.
Our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2023-05-07T09:06:11Z) - Personalized Subgraph Federated Learning [56.52903162729729]
We introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs.
We propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it.
We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs.
arXiv Detail & Related papers (2022-06-21T09:02:53Z) - Graph-MLP: Node Classification without Message Passing in Graph [28.604893350871777]
Graph Neural Network (GNN) has been demonstrated its effectiveness in dealing with non-Euclidean structural data.
Recent works have mainly focused on powerful message passing modules, however, in this paper, we show that none of the message passing modules is necessary.
We propose a pure multilayer-perceptron-based framework, Graph-MLP with the supervision signal leveraging graph structure.
arXiv Detail & Related papers (2021-06-08T02:07:21Z) - Cyclic Label Propagation for Graph Semi-supervised Learning [52.102251202186025]
We introduce a novel framework for graph semi-supervised learning called CycProp.
CycProp integrates GNNs into the process of label propagation in a cyclic and mutually reinforcing manner.
In particular, our proposed CycProp updates the node embeddings learned by GNN module with the augmented information by label propagation.
arXiv Detail & Related papers (2020-11-24T02:55:40Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.