論文の概要: HumanSplat: Generalizable Single-Image Human Gaussian Splatting with Structure Priors
- arxiv url: http://arxiv.org/abs/2406.12459v1
- Date: Tue, 18 Jun 2024 10:05:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:27:22.558103
- Title: HumanSplat: Generalizable Single-Image Human Gaussian Splatting with Structure Priors
- Title(参考訳): Human Splat: 構造を優先した汎用的な単一画像型人ガウススプレイティング
- Authors: Panwang Pan, Zhuo Su, Chenguo Lin, Zhen Fan, Yongjie Zhang, Zeming Li, Tingting Shen, Yadong Mu, Yebin Liu,
- Abstract要約: HumanSplatは、単一の入力画像から、任意の人間の3次元ガウススプティング特性を予測する。
HumanSplatは、フォトリアリスティックなノベルビュー合成を実現するために、既存の最先端の手法を超越している。
- 参考スコア(独自算出の注目度): 47.62426718293504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advancements in high-fidelity human reconstruction techniques, the requirements for densely captured images or time-consuming per-instance optimization significantly hinder their applications in broader scenarios. To tackle these issues, we present HumanSplat which predicts the 3D Gaussian Splatting properties of any human from a single input image in a generalizable manner. In particular, HumanSplat comprises a 2D multi-view diffusion model and a latent reconstruction transformer with human structure priors that adeptly integrate geometric priors and semantic features within a unified framework. A hierarchical loss that incorporates human semantic information is further designed to achieve high-fidelity texture modeling and better constrain the estimated multiple views. Comprehensive experiments on standard benchmarks and in-the-wild images demonstrate that HumanSplat surpasses existing state-of-the-art methods in achieving photorealistic novel-view synthesis.
- Abstract(参考訳): 近年の高忠実度人体再構成技術の発展にもかかわらず、密集した画像の要求やインスタンスごとの時間的最適化は、より広いシナリオでの応用を著しく妨げている。
これらの課題に対処するために,1つの入力画像から任意の人間の3次元ガウス散乱特性を一般化可能な方法で予測するHumanSplatを提案する。
特に、HumanSplatは、2次元の多視点拡散モデルと、統合されたフレームワーク内で幾何学的先行と意味的特徴を包括的に統合する人間の構造を持つ潜時再構成トランスフォーマを備える。
人間の意味情報を組み込んだ階層的損失は、高忠実度テクスチャモデリングを実現し、推定された複数のビューをよりよく制約するように設計されている。
標準ベンチマークとインザワイルド画像に関する総合的な実験により、HumanSplatはフォトリアリスティックなノベルビュー合成を実現する上で、既存の最先端の手法を超越していることが示された。
関連論文リスト
- HumanGif: Single-View Human Diffusion with Generative Prior [25.516544735593087]
HumanGif/strong>は,2次元キャラクタアニメーションの成功に動機づけられた1視点のヒト拡散モデルである。
単一ビューに基づく3次元人間の新しいビューを定式化し、単一ビュー条件のヒト拡散過程として合成する。
論文 参考訳(メタデータ) (2025-02-17T17:55:27Z) - GAS: Generative Avatar Synthesis from a Single Image [54.95198111659466]
一つの画像からビュー一貫性と時間的コヒーレントなアバターを合成するための、一般化可能で統一されたフレームワークを導入する。
提案手法は, 回帰に基づく3次元再構成と拡散モデルの生成能力を組み合わせることで, このギャップを埋めるものである。
論文 参考訳(メタデータ) (2025-02-10T19:00:39Z) - GeneMAN: Generalizable Single-Image 3D Human Reconstruction from Multi-Source Human Data [61.05815629606135]
高忠実度3Dモデルを構築するのが難しい課題です。
GeneMANは高品質な人間のデータを総合的に収集する。
GeneMANは、単一の画像入力から高品質な3Dモデルを生成することができ、最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2024-11-27T18:59:54Z) - HFGaussian: Learning Generalizable Gaussian Human with Integrated Human Features [23.321087432786605]
HFGaussianと呼ばれる新しいアプローチでは、25FPSでスパルス入力画像から3Dスケルトン、3Dキーポイント、高密度ポーズなどの新しいビューや人間の特徴をリアルタイムで推定できる。
我々は,HFGaussの手法をヒトガウススプラッティングにおける最新の最先端技術に対して徹底的に評価し,そのリアルタイム,最先端性能を示す。
論文 参考訳(メタデータ) (2024-11-05T13:31:04Z) - PSHuman: Photorealistic Single-view Human Reconstruction using Cross-Scale Diffusion [43.850899288337025]
PSHumanは、マルチビュー拡散モデルから事前情報を利用した人間のメッシュを明示的に再構築する新しいフレームワークである。
単視点の人間の画像に直接多視点拡散を適用すると、厳密な幾何学的歪みが生じることが判明した。
そこで我々は, SMPL-Xのようなパラメトリックモデルを用いて, 人間のポーズの断面形状の整合性を高めるために, 生成モデルを定式化した。
論文 参考訳(メタデータ) (2024-09-16T10:13:06Z) - HyperHuman: Hyper-Realistic Human Generation with Latent Structural Diffusion [114.15397904945185]
本稿では,高リアリズムと多彩なレイアウトの人体画像を生成する統一的なフレームワークHyperHumanを提案する。
本モデルは,統合ネットワークにおける画像の外観,空間的関係,幾何学の連成学習を強制する。
我々のフレームワークは最先端の性能を生み出し、多様なシナリオ下で超現実的な人間の画像を生成する。
論文 参考訳(メタデータ) (2023-10-12T17:59:34Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
既存のソリューションは通常、新しい設定への一般化性能の低下に悩まされる。
マルチビューヒューマンメッシュリカバリのためのシミュレーションに基づく新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-12-10T06:28:29Z) - HMOR: Hierarchical Multi-Person Ordinal Relations for Monocular
Multi-Person 3D Pose Estimation [54.23770284299979]
本稿では, 階層型多人数常連関係(HMOR)を新たに導入する。
HMORは相互作用情報を階層的に深さと角度の順序関係として符号化する。
統合トップダウンモデルは、学習プロセスにおけるこれらの順序関係を活用するように設計されている。
提案手法は, 公開されている多人数の3Dポーズデータセットにおいて, 最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-08-01T07:53:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。