論文の概要: The Power of LLM-Generated Synthetic Data for Stance Detection in Online Political Discussions
- arxiv url: http://arxiv.org/abs/2406.12480v1
- Date: Tue, 18 Jun 2024 10:36:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:27:22.521628
- Title: The Power of LLM-Generated Synthetic Data for Stance Detection in Online Political Discussions
- Title(参考訳): オンライン政治討論における筆跡検出のためのLLM生成合成データの活用
- Authors: Stefan Sylvius Wagner, Maike Behrendt, Marc Ziegele, Stefan Harmeling,
- Abstract要約: オンライン政治議論において、合成データを利用して姿勢検出エージェントを訓練し、改善する方法を示す。
我々はMistral-7Bモデルにより、特定の議論のための合成データを生成する。
本研究は,合成データと非ラベルデータセットの最も情報性の高いサンプルを組み合わせることによる影響について検討する。
- 参考スコア(独自算出の注目度): 1.1624569521079426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stance detection holds great potential for enhancing the quality of online political discussions, as it has shown to be useful for summarizing discussions, detecting misinformation, and evaluating opinion distributions. Usually, transformer-based models are used directly for stance detection, which require large amounts of data. However, the broad range of debate questions in online political discussion creates a variety of possible scenarios that the model is faced with and thus makes data acquisition for model training difficult. In this work, we show how to leverage LLM-generated synthetic data to train and improve stance detection agents for online political discussions:(i) We generate synthetic data for specific debate questions by prompting a Mistral-7B model and show that fine-tuning with the generated synthetic data can substantially improve the performance of stance detection. (ii) We examine the impact of combining synthetic data with the most informative samples from an unlabelled dataset. First, we use the synthetic data to select the most informative samples, second, we combine both these samples and the synthetic data for fine-tuning. This approach reduces labelling effort and consistently surpasses the performance of the baseline model that is trained with fully labeled data. Overall, we show in comprehensive experiments that LLM-generated data greatly improves stance detection performance for online political discussions.
- Abstract(参考訳): スタンス検出は、議論を要約し、誤情報を検出し、意見分布を評価するのに有用であることが示されているように、オンラインの政治的議論の質を高める大きな可能性を秘めている。
通常、変圧器ベースのモデルは、大量のデータを必要とする姿勢検出に直接使用される。
しかし、オンライン政治討論における幅広い議論の問題は、モデルが直面している様々なシナリオを生み出し、モデルトレーニングのためのデータ取得を困難にしている。
本研究では,LLM生成合成データをオンライン政治討論における姿勢検出エージェントの訓練・改善に活用する方法を示す。
(i)Mistral-7Bモデルにより特定の議論のための合成データを生成し、生成した合成データによる微調整が姿勢検出の性能を大幅に向上させることを示す。
(II)合成データと最も情報に富んだデータセットの組合せが与える影響について検討した。
まず、合成データを用いて最も情報性の高いサンプルを選択し、次に、これらのサンプルと合成データを組み合わせて微調整する。
このアプローチはラベル付けの労力を削減し、完全にラベル付けされたデータでトレーニングされたベースラインモデルのパフォーマンスを一貫して上回る。
全体として、LLM生成データにより、オンライン政治討論における姿勢検出性能が大幅に向上することを示す。
関連論文リスト
- On the Diversity of Synthetic Data and its Impact on Training Large Language Models [34.00031258223175]
大規模言語モデル(LLM)は、多種多様な高品質な事前学習データの必要性を強調している。
合成データは、データの不足とアクセシビリティの課題に対する、実行可能なソリューションとして現れます。
本研究では, 事前学習および微調整段階における合成データ多様性の下流効果について検討した。
論文 参考訳(メタデータ) (2024-10-19T22:14:07Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Synthetic Oversampling: Theory and A Practical Approach Using LLMs to Address Data Imbalance [16.047084318753377]
不均衡なデータと急激な相関は、機械学習とデータサイエンスにおける一般的な課題である。
過度に表現されていないクラスのインスタンス数を人工的に増加させるオーバーサンプリングは、これらの課題に対処するために広く採用されている。
我々は,大規模言語モデルの能力を活用して,少数グループを対象とした高品質な合成データを生成する,体系的なオーバーサンプリング手法であるOPALを紹介する。
論文 参考訳(メタデータ) (2024-06-05T21:24:26Z) - SQBC: Active Learning using LLM-Generated Synthetic Data for Stance Detection in Online Political Discussions [1.1624569521079426]
オンライン政治討論における姿勢検出エージェントの訓練と改善にLLM生成合成データを活用する2つの方法を提案する。
まず,簡単な微調整データセットを合成データで拡張することで,姿勢検出モデルの性能を向上できることを示す。
第2に,クエリ・バイ・コミティ(Query-by-Comittee)アプローチに基づくSQBCと呼ばれる新しいアクティブ・ラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-04-11T18:34:11Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - On Synthetic Data for Back Translation [66.6342561585953]
逆翻訳(BT)はNTT研究分野において最も重要な技術の一つである。
バックトランスレーションNMTの性能を制御する合成データには,品質と重要性の2つの重要な要素を同定する。
そこで本研究では,BTの性能向上のために,両因子のトレードオフを改善するため,合成データを生成するための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2023-10-20T17:24:12Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
本稿では,NLPにおける合成データ生成のニュアンスについて考察する。
データ拡張の可能性や構造化品種の導入など、その利点を強調します。
テンプレートベースの合成データが現代の変圧器モデルの性能に与える影響を実証する。
論文 参考訳(メタデータ) (2023-10-11T19:16:09Z) - Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study
on Telematics Data with ChatGPT [0.0]
この研究は、OpenAIの強力な言語モデルであるChatGPTを活用して、特にテレマティクス分野における合成データセットの構築と利用に力を入れている。
このデータ作成プロセスを説明するために、合成テレマティクスデータセットの生成に焦点を当てたハンズオンケーススタディが実施されている。
論文 参考訳(メタデータ) (2023-06-23T15:15:13Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。