論文の概要: Privacy-Preserving Synthetic Review Generation with Diverse Writing Styles Using LLMs
- arxiv url: http://arxiv.org/abs/2507.18055v1
- Date: Thu, 24 Jul 2025 03:12:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:42.916306
- Title: Privacy-Preserving Synthetic Review Generation with Diverse Writing Styles Using LLMs
- Title(参考訳): LLMを用いた多彩な書体スタイルによるプライバシ保護合成レビュー生成
- Authors: Tevin Atwal, Chan Nam Tieu, Yefeng Yuan, Zhan Shi, Yuhong Liu, Liang Cheng,
- Abstract要約: LLM(Large Language Models)によって生成された合成データは、モデルトレーニングを容易にするために、実世界のデータに代わる費用効率が高くスケーラブルな代替手段を提供する。
我々は,複数の最先端LCMから生成される合成データセットの多様性(言語表現,感情,ユーザ視点)を定量的に評価する。
評価結果を参考に,レビュアーのプライバシを保ちつつ,合成レビューの多様性を高めるために,プロンプトベースのアプローチを提案する。
- 参考スコア(独自算出の注目度): 6.719863580831653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing use of synthetic data generated by Large Language Models (LLMs) presents both opportunities and challenges in data-driven applications. While synthetic data provides a cost-effective, scalable alternative to real-world data to facilitate model training, its diversity and privacy risks remain underexplored. Focusing on text-based synthetic data, we propose a comprehensive set of metrics to quantitatively assess the diversity (i.e., linguistic expression, sentiment, and user perspective), and privacy (i.e., re-identification risk and stylistic outliers) of synthetic datasets generated by several state-of-the-art LLMs. Experiment results reveal significant limitations in LLMs' capabilities in generating diverse and privacy-preserving synthetic data. Guided by the evaluation results, a prompt-based approach is proposed to enhance the diversity of synthetic reviews while preserving reviewer privacy.
- Abstract(参考訳): LLM(Large Language Models)によって生成される合成データの利用の増加は、データ駆動アプリケーションにおける機会と課題の両方を提示する。
合成データは、モデルトレーニングを容易にするために、実世界のデータに代わるコスト効率が高くスケーラブルな代替手段を提供するが、その多様性とプライバシーのリスクは未調査のままである。
テキストベースの合成データに着目し,複数の最先端LCMが生成する合成データセットの多様性(言語表現,感情,ユーザ視点)とプライバシ(再識別リスクとスタイリスティックアウトリーチ)を定量的に評価する,包括的なメトリクスセットを提案する。
実験結果から,LLMの多種多様かつプライバシ保護型合成データ生成能力の大幅な制限が明らかになった。
評価結果を参考に,レビュアーのプライバシを保ちつつ,合成レビューの多様性を高めるために,プロンプトベースのアプローチを提案する。
関連論文リスト
- FSPO: Few-Shot Preference Optimization of Synthetic Preference Data in LLMs Elicits Effective Personalization to Real Users [111.56469697145519]
メタ学習問題として報酬モデルを再設計するFew-Shot Preference Optimizationを提案する。
このフレームワークでは、LDMはそのユーザからいくつかのラベル付けされた好みを通じてユーザへの迅速な適応を学び、パーソナライズされた報酬関数を構築する。
公開されているLLMを用いて100万以上の合成パーソナライズされた好みを生成する。
本研究は,映画レビュー,教育背景に基づく教育適応,一般質問応答の3分野を対象に,最大1,500人の総合ユーザを対象に,パーソナライズされたオープンエンド世代に対するFSPOの評価を行った。
論文 参考訳(メタデータ) (2025-02-26T17:08:46Z) - Creating Artificial Students that Never Existed: Leveraging Large Language Models and CTGANs for Synthetic Data Generation [2.4374097382908477]
総合的なデータを利用して、学習分析モデルを提供するための人工的な学生を創出できるかどうかを検討する。
本研究は,学生データに類似した高品質な合成データセットを作成する上で,これらの手法の強い可能性を示すものである。
論文 参考訳(メタデータ) (2025-01-03T12:52:51Z) - SafeSynthDP: Leveraging Large Language Models for Privacy-Preserving Synthetic Data Generation Using Differential Privacy [0.0]
差分プライバシー(DP)機構を用いた合成データセットを生成するための大規模言語モデル(Ms)の能力について検討する。
提案手法では,ラプラス分布やガウス分布を含むDPベースのノイズ注入法をデータ生成プロセスに組み込む。
次に、これらのDP強化合成データセットの有用性を、トレーニングされたMLモデルの性能と、元のデータでトレーニングされたモデルとを比較して評価する。
論文 参考訳(メタデータ) (2024-12-30T01:10:10Z) - Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
第2回FRCSyn-onGoingチャレンジは、CVPR 2024で開始された第2回顔認識チャレンジ(FRCSyn)に基づいている。
我々は、顔認識における現在の課題を解決するために、個々のデータと実際のデータの組み合わせの両方で合成データの利用を検討することに重点を置いている。
論文 参考訳(メタデータ) (2024-12-02T11:12:01Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
機密情報を含む匿名化は、幅広いアプリケーションにとって不可欠である。
既存の技術は、大規模言語モデルの再識別能力の新たな課題に直面している。
本稿では,プライバシ評価器,ユーティリティ評価器,最適化コンポーネントの3つの重要なコンポーネントで構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Differentially Private Tabular Data Synthesis using Large Language Models [6.6376578496141585]
本稿ではDP-LLMTGenについて紹介する。
DP-LLMTGenは、2段階の微調整手順を用いて、センシティブなデータセットをモデル化する。
微調整LDMをサンプリングすることで合成データを生成する。
論文 参考訳(メタデータ) (2024-06-03T15:43:57Z) - A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models [3.672850225066168]
生成AIと大規模言語モデル(LLM)は、合成データを生成するための新たな道を開いた。
潜在的なメリットにもかかわらず、プライバシー漏洩に関する懸念が浮上している。
我々は,合成表データの忠実さ,有用性,およびプライバシー保護を評価するために設計されたオープンソースの評価フレームワークであるSynEvalを紹介する。
論文 参考訳(メタデータ) (2024-04-20T08:08:28Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Scaling While Privacy Preserving: A Comprehensive Synthetic Tabular Data
Generation and Evaluation in Learning Analytics [0.412484724941528]
プライバシーは学習分析(LA)の進歩に大きな障害となり、匿名化の不十分さやデータ誤用といった課題を提示している。
合成データは潜在的な対策として現れ、堅牢なプライバシー保護を提供する。
LAの合成データに関する以前の研究では、プライバシーとデータユーティリティの微妙なバランスを評価するのに不可欠な、徹底的な評価が欠如していた。
論文 参考訳(メタデータ) (2024-01-12T20:27:55Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。