論文の概要: Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models
- arxiv url: http://arxiv.org/abs/2406.12644v3
- Date: Sun, 01 Dec 2024 17:45:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 21:01:15.643674
- Title: Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models
- Title(参考訳): 階層型プロンプト分類:大規模言語モデルのための普遍的評価フレームワーク
- Authors: Devichand Budagam, Ashutosh Kumar, Mahsa Khoshnoodi, Sankalp KJ, Vinija Jain, Aman Chadha,
- Abstract要約: 本稿では,人間の認知原理に基づく階層型確率分類(HPT)について述べる。
様々なタスクの認知的要求を調べることにより、大規模言語モデル(LLM)を評価するように設計されている。
HPTは、多様なシナリオでLLMの問題解決スキルを評価するための信頼性の高い方法を提供している。
- 参考スコア(独自算出の注目度): 1.8853906324722882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assessing the effectiveness of large language models (LLMs) in performing different tasks is crucial for understanding their strengths and weaknesses. This paper presents the Hierarchical Prompting Taxonomy (HPT), grounded on human cognitive principles and designed to assess LLMs by examining the cognitive demands of various tasks. The HPT uses the Hierarchical Prompting Framework (HPF), a prompt selection framework that organizes five distinct prompting strategies by their cognitive load on LLMs. This study introduces the Hierarchical Prompting Index (HPI) to measure task complexity, which demonstrates LLMs' abilities across different datasets and serves as a universal metric for task complexity. The HPT offers a reliable method for evaluating LLMs' problem-solving skills in diverse scenarios, leading to clearer conclusions. Extensive experiments with multiple datasets and LLMs show that the HPF enhances LLM performance by 2\% to 63\% compared to standard benchmark datasets, confirming the effectiveness of the HPT. To support future research in this domain, the implementations of HPT and HPF are publicly available
- Abstract(参考訳): 大きな言語モデル(LLM)の異なるタスクの実行の有効性を評価することは、その強みと弱点を理解する上で重要である。
本稿では,人間の認知原理に基づく階層型確率分類法(HPT)について述べる。
HPTはHPF(Hierarchical Prompting Framework)というプロンプト選択フレームワークを使用している。
本研究では,HPI(Hierarchical Prompting Index)を導入してタスク複雑性を計測し,複数のデータセットにまたがるLCMの能力を示し,タスク複雑性の普遍的指標として機能する。
HPTは、多様なシナリオにおいてLLMの問題解決スキルを評価するための信頼性の高い方法を提供し、より明確な結論をもたらす。
複数のデータセットとLLMを用いた大規模な実験により、HPFは標準ベンチマークデータセットと比較してLLM性能を2\%から63%向上し、HPTの有効性を確認した。
この領域における今後の研究を支援するため、HPTとHPFの実装が公開されている。
関連論文リスト
- Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LFはゴール指向の潜在因子発見システムである。
命令フォロー機能と統計モデルを統合して、ノイズの多いデータセットを処理する。
論文 参考訳(メタデータ) (2025-02-21T02:03:08Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とLLMのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
文,意味,多言語レベルでユーザ命令を攻撃することにより,逆ユーザ命令を構築する。
我々は、ロバストネス設定を組み込んだベンチマークを用いて、3つのクローズドソースと4つのオープンソースLCMをテストする。
GPT-4は我々のベンチマークで最も高い性能と強靭性を示す。
論文 参考訳(メタデータ) (2024-03-06T15:33:32Z) - Benchmarking the Text-to-SQL Capability of Large Language Models: A
Comprehensive Evaluation [33.41556606816004]
大規模言語モデル(LLM)は、テキストからタスクへ進むための強力なツールとして登場した。
最適なプロンプトテンプレートと設計フレームワークについてはまだ合意が得られていない。
既存のベンチマークでは、テキスト・ツー・プロセスの様々なサブタスクにまたがるLCMのパフォーマンスが不十分である。
論文 参考訳(メタデータ) (2024-03-05T13:23:48Z) - Evaluating LLMs' Mathematical Reasoning in Financial Document Question
Answering [53.56653281752486]
本研究では,大言語モデルによる4つの財務質問応答データセットの数学的推論について検討する。
数理推論のステップの数が増えるにつれて、テーブルの複雑さや性能の変化に対する感度に焦点をあてる。
半構造化文書に適した新しいプロンプト技術を導入する。
論文 参考訳(メタデータ) (2024-02-17T05:10:18Z) - PiCO: Peer Review in LLMs based on the Consistency Optimization [19.130941716491716]
ピアレビュー機構を用いて,大規模言語モデル(LLM)を自動的に測定する。
制約付き最適化問題として定式化し、各LLMの能力とスコアの一貫性を最大化することを目的としている。
我々はPEN, CIN, LISという3つの指標を提案し, ランク付けのギャップを評価する。
論文 参考訳(メタデータ) (2024-02-02T18:49:26Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
我々は,言語モデル(LLM)の驚くべきパワーを活用して課題を解決することを検討する。
LLaMA2を微調整し,既存のエキスパートアノテートデータセットから自動生成したトレーニングデータを用いてTAT-LLM言語モデルを開発する。
論文 参考訳(メタデータ) (2024-01-24T04:28:50Z) - On Evaluating the Integration of Reasoning and Action in LLM Agents with
Database Question Answering [25.57202500348071]
本研究では、大規模言語モデルがデータベースとどのように相互作用するかを評価するために設計された、新しい長文データベース質問応答データセットを提案する。
このタスクでは、LLMが戦略的に複数のクエリを生成し、データベースから十分なデータを取得し、取得したコンテキストを推論し、それらを総合的な分析的な物語に合成する必要がある。
本稿では2つのインタラクション戦略を提案し評価し、インタラクション内の個々のステージを詳細に分析する。
論文 参考訳(メタデータ) (2023-11-16T09:55:07Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - ChEF: A Comprehensive Evaluation Framework for Standardized Assessment
of Multimodal Large Language Models [49.48109472893714]
MLLM(Multimodal Large Language Models)は、視覚コンテンツと無数の下流タスクとを相互作用する優れた能力を示す。
本稿では,各MLLMを全体プロファイルし,異なるMLLMを比較した最初の総合評価フレームワーク(ChEF)を提案する。
詳細な実装をすべて公開して、さらなる分析と、新しいレシピやモデルを統合するための使い易いモジュラーツールキットを提供します。
論文 参考訳(メタデータ) (2023-11-05T16:01:40Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Metacognitive Prompting Improves Understanding in Large Language Models [12.112914393948415]
メタ認知プロンプト(MP)は,人間の内省的推論プロセスにインスパイアされた戦略である。
我々は10の自然言語理解(NLU)データセットにまたがる4つの先行するLarge Language Model(LLM)の実験を行った。
MPは、一般的なNLUタスクとドメイン固有のNLUタスクの両方において、既存のプロンプトメソッドを一貫して上回っている。
論文 参考訳(メタデータ) (2023-08-10T05:10:17Z) - TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks [2.822851601000061]
本稿では,多様な複雑なタスクを実行するために,特定の特性を持つプロンプトを設計するための一般的な分類法を提案する。
この分類学により、将来のベンチマーク研究は、研究の一部として使われるプロンプトの特定のカテゴリを報告できるようになる。
論文 参考訳(メタデータ) (2023-05-19T04:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。