論文の概要: Enhancing Spatio-temporal Quantile Forecasting with Curriculum Learning: Lessons Learned
- arxiv url: http://arxiv.org/abs/2406.12709v2
- Date: Mon, 16 Sep 2024 14:44:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 01:46:04.788791
- Title: Enhancing Spatio-temporal Quantile Forecasting with Curriculum Learning: Lessons Learned
- Title(参考訳): カリキュラム学習による時空間量子予測の時空間化
- Authors: Du Yin, Jinliang Deng, Shuang Ao, Zechen Li, Hao Xue, Arian Prabowo, Renhe Jiang, Xuan Song, Flora Salim,
- Abstract要約: 問題時間データ(ST)データのトレーニングモデルは、データ自体の複雑で多様な性質のため、オープンな積み重ねとなる。
モデルの性能が元のSTデータに基づいて直接訓練されることを保証することは困難である。
本稿では,空間的,時間的,定量的な視点を対象とする3種類のカリキュラム学習を取り入れた革新的パラダイムを提案する。
- 参考スコア(独自算出の注目度): 11.164896279040379
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training models on spatio-temporal (ST) data poses an open problem due to the complicated and diverse nature of the data itself, and it is challenging to ensure the model's performance directly trained on the original ST data. While limiting the variety of training data can make training easier, it can also lead to a lack of knowledge and information for the model, resulting in a decrease in performance. To address this challenge, we presented an innovative paradigm that incorporates three separate forms of curriculum learning specifically targeting from spatial, temporal, and quantile perspectives. Furthermore, our framework incorporates a stacking fusion module to combine diverse information from three types of curriculum learning, resulting in a strong and thorough learning process. We demonstrated the effectiveness of this framework with extensive empirical evaluations, highlighting its better performance in addressing complex ST challenges. We provided thorough ablation studies to investigate the effectiveness of our curriculum and to explain how it contributes to the improvement of learning efficiency on ST data.
- Abstract(参考訳): 時空間データ(ST)データのトレーニングモデルは、データ自体の複雑で多様な性質のため、オープンな問題を引き起こす。
さまざまなトレーニングデータを制限することで、トレーニングが容易になる一方で、モデルに関する知識や情報が不足しているため、パフォーマンスが低下する可能性がある。
この課題に対処するために,空間的,時間的,量的な視点を対象とする3種類のカリキュラム学習を取り入れた,革新的なパラダイムを紹介した。
さらに,本フレームワークは,3種類のカリキュラム学習から多種多様な情報を組み合わせた積み重ね融合モジュールを組み込んで,強力かつ徹底的な学習プロセスを実現する。
このフレームワークの有効性を実証的な評価で実証し、複雑なST課題に対処する上での優れた性能を強調した。
カリキュラムの有効性を調査し,STデータにおける学習効率の向上にどのように貢献するかを説明するために,徹底的なアブレーション研究を行った。
関連論文リスト
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU)フレームワークは3つのコアコンポーネントで構成されている。
知識未学習誘導モジュールは、未学習の損失を通じて特定の知識を除去する。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を維持する。
また、特定のデータ片の未学習範囲を動的に評価し、反復的な更新を行う反復未学習リファインメントモジュールも用意されている。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated Learning (FL)は、大規模言語モデル(LLM)をトレーニングするための魅力的なフレームワークを提供する
私たちは機械学習に重点を置いています。これは、忘れられる権利のようなプライバシー規則に従う上で重要な側面です。
摂動技術やモデル分解,漸進学習など,効果的なアンラーニングを可能にするさまざまな戦略を探求する。
論文 参考訳(メタデータ) (2024-06-14T08:40:58Z) - Variational Curriculum Reinforcement Learning for Unsupervised Discovery
of Skills [25.326624139426514]
本稿では,VUVC(Value Uncertainty Vari Curriculum Curriculum)と呼ばれる情報理論に基づく教師なしスキル発見手法を提案する。
規則性条件下では、VUVCは、均一なカリキュラムに比べて訪問状態のエントロピーの増加を加速させる。
また,本手法によって発見された技術は,ゼロショット設定で現実のロボットナビゲーションタスクを達成できることを実証した。
論文 参考訳(メタデータ) (2023-10-30T10:34:25Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
1つのオフラインデータセットから2つの異なるモデルを別々に学習することで、探索と表現の学習を改善することができることを示す。
ノイズコントラスト推定と補助報酬モデルを用いて状態表現を学習することで、挑戦的なNetHackベンチマークのサンプル効率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-03-31T18:03:30Z) - Ex-Model: Continual Learning from a Stream of Trained Models [12.27992745065497]
連続的な学習システムは、訓練されたモデルの形式で圧縮された情報の可用性を活用するべきであると論じる。
エージェントが生データの代わりに以前に訓練されたモデルのシーケンスから学習する「Ex-Model Continual Learning」(Ex-Model Continual Learning)という新しいパラダイムを導入し、形式化する。
論文 参考訳(メタデータ) (2021-12-13T09:46:16Z) - Sampling Approach Matters: Active Learning for Robotic Language
Acquisition [42.69529080098759]
本稿では,複雑性の異なる3つの基礎言語問題に適用した能動的学習手法について検討する。
特徴選択や分類モデルといった設計上の決定とともに,その基礎となる課題の特徴がどのような結果をもたらすかを報告する。
論文 参考訳(メタデータ) (2020-11-16T15:18:10Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
本稿では,視覚概念学習のための質問応答型カリキュラムを提案する。
視覚概念を学習するためのニューラルシンボリックな概念学習者と学習プロセスを導くための多次元項目応答理論(mIRT)モデルを設計する。
CLEVRの実験結果から,コンピテンスを意識したカリキュラムにより,提案手法は最先端のパフォーマンスを実現することが示された。
論文 参考訳(メタデータ) (2020-07-03T05:08:09Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。