論文の概要: Informatics & dairy industry coalition: AI trends and present challenges
- arxiv url: http://arxiv.org/abs/2406.12770v2
- Date: Wed, 19 Jun 2024 11:49:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 11:58:33.000850
- Title: Informatics & dairy industry coalition: AI trends and present challenges
- Title(参考訳): インフォマティクスと乳製品産業連合 : AIの動向と課題
- Authors: Silvia García-Méndez, Francisco de Arriba-Pérez, María del Carmen Somoza-López,
- Abstract要約: この研究は、AIを活用可能な産業上の課題を包括的に記述し、乳製品産業に焦点を当てている。
結論は、牛のモニタリングと農家に対する新しいアプローチを、彼らのニーズに先進的な技術ソリューションを提案して適用する上で有効である。
- 参考スコア(独自算出の注目度): 5.014059576916173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) can potentially transform the industry, enhancing the production process and minimizing manual, repetitive tasks. Accordingly, the synergy between high-performance computing and powerful mathematical models enables the application of sophisticated data analysis procedures like Machine Learning. However, challenges exist regarding effective, efficient, and flexible processing to generate valuable knowledge. Consequently, this work comprehensively describes industrial challenges where AI can be exploited, focusing on the dairy industry. The conclusions presented can help researchers apply novel approaches for cattle monitoring and farmers by proposing advanced technological solutions to their needs.
- Abstract(参考訳): 人工知能(AI)は、産業を変革し、生産プロセスを強化し、手動で反復的なタスクを最小限にする可能性がある。
したがって、高性能コンピューティングと強力な数学的モデルとの相乗効果により、機械学習のような高度なデータ解析手法の適用が可能になる。
しかし、価値ある知識を生み出すために、効果的で効率的で柔軟な処理に関する課題が存在する。
結果として、この研究はAIを活用できる産業上の課題を包括的に記述し、乳製品産業に焦点を当てている。
結論は、牛のモニタリングと農家に対する新しいアプローチを、彼らのニーズに先進的な技術ソリューションを提案して適用する上で有効である。
関連論文リスト
- On the role of Artificial Intelligence methods in modern force-controlled manufacturing robotic tasks [0.0]
ロボットマニピュレータの強化におけるAIの役割は、スマートマニュファクチャリングにおける重要なイノベーションに急速に結びついている。
この記事では、これらのイノベーションを実効力によって制御されたアプリケーションにまとめ、高品質な生産標準を維持する必要性を強調します。
この分析は、AI技術を検証するための共通のパフォーマンスメトリクスの必要性を強調した、将来の研究方向性の視点で締めくくっている。
論文 参考訳(メタデータ) (2024-09-25T11:29:26Z) - Comprehensive Overview of Artificial Intelligence Applications in Modern Industries [0.3374875022248866]
本稿では、医療、金融、製造業、小売の4つの主要な分野にわたるAIの適用について検討する。
我々は、倫理的考察、AI開発の将来的な軌跡、そして経済成長を促進する可能性など、AI統合がもたらす意味について論じる。
論文 参考訳(メタデータ) (2024-09-19T19:22:52Z) - Machine learning for industrial sensing and control: A survey and
practical perspective [7.678648424345052]
プロセス産業で実際に成功している重要な統計および機械学習技術を特定する。
ソフトセンシングは、統計学と機械学習の手法の多くの産業応用を含んでいる。
データ駆動最適化と制御のための2つの異なるフレーバーについて考察する。
論文 参考訳(メタデータ) (2024-01-24T22:27:04Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
本論文は、最先端技術と、実世界の操作タスクに適用された機械学習手法の最近の動向についてレビューする。
論文の残りの部分は、産業、医療、農業、宇宙、軍事、捜索救助など、さまざまな分野におけるML応用に費やされている。
論文 参考訳(メタデータ) (2023-09-22T01:06:32Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Federated Learning for Industrial Internet of Things in Future
Industries [106.13524161081355]
産業用IoT(Industrial Internet of Things)は,産業用システムの運用を変革する有望な機会を提供する。
近年、人工知能(AI)はインテリジェントIIoTアプリケーションの実現に広く利用されている。
フェデレートラーニング(FL)は、複数のIIoTデバイスとマシンを協調して、ネットワークエッジでAIトレーニングを実行することで、インテリジェントなIIoTネットワークにとって特に魅力的である。
論文 参考訳(メタデータ) (2021-05-31T01:02:59Z) - Validate and Enable Machine Learning in Industrial AI [47.20869253934116]
産業用AIは、より効率的な将来の産業用制御システムを約束する。
Petuum Optimumシステムは、AIモデルの作成とテストの課題を示す例として使用される。
論文 参考訳(メタデータ) (2020-10-30T20:33:05Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。