Graph Neural Networks in Histopathology: Emerging Trends and Future Directions
- URL: http://arxiv.org/abs/2406.12808v3
- Date: Fri, 21 Jun 2024 08:57:40 GMT
- Title: Graph Neural Networks in Histopathology: Emerging Trends and Future Directions
- Authors: Siemen Brussee, Giorgio Buzzanca, Anne M. R. Schrader, Jesper Kers,
- Abstract summary: The application of Graph Neural Networks in histopathology has experienced rapid growth.
We identify four emerging trends: Hierarchical GNNs, Adaptive Graph Structure Learning, Multimodal GNNs, and Higher-order GNNs.
Based on our findings, we propose future directions to propel the field forward.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Histopathological analysis of Whole Slide Images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fall short in capturing the intricate spatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a promising alternative, adept at directly modeling pairwise interactions and effectively discerning the topological tissue and cellular structures within WSIs. Recognizing the pressing need for deep learning techniques that harness the topological structure of WSIs, the application of GNNs in histopathology has experienced rapid growth. In this comprehensive review, we survey GNNs in histopathology, discuss their applications, and explore emerging trends that pave the way for future advancements in the field. We begin by elucidating the fundamentals of GNNs and their potential applications in histopathology. Leveraging quantitative literature analysis, we identify four emerging trends: Hierarchical GNNs, Adaptive Graph Structure Learning, Multimodal GNNs, and Higher-order GNNs. Through an in-depth exploration of these trends, we offer insights into the evolving landscape of GNNs in histopathological analysis. Based on our findings, we propose future directions to propel the field forward. Our analysis serves to guide researchers and practitioners towards innovative approaches and methodologies, fostering advancements in histopathological analysis through the lens of graph neural networks.
Related papers
- Analysis of Gene Regulatory Networks from Gene Expression Using Graph Neural Networks [0.4369058206183195]
This study explores the use of Graph Neural Networks (GNNs), a powerful approach for modeling graph-structured data like Gene Regulatory Networks (GRNs)
The model's adeptness in accurately predicting regulatory interactions and pinpointing key regulators is attributed to advanced attention mechanisms.
The integration of GNNs in GRN research is set to pioneer developments in personalized medicine, drug discovery, and our grasp of biological systems.
arXiv Detail & Related papers (2024-09-20T17:16:14Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds [12.037840490243603]
We investigate the internal mechanisms of neural networks through the lens of neural population geometry.
We quantitatively characterize how different learning objectives lead to differences in the organizational strategies of these models.
These analyses present a strong direction for bridging mechanistic and normative theories in neural networks through neural population geometry.
arXiv Detail & Related papers (2023-12-21T20:40:51Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
Graph neural networks (GNNs) provide a possibility to interpret new structured graph signals.
We show that by learning localized functional interactions on the substrate, GNN based approaches are able to robustly scale to large network studies.
arXiv Detail & Related papers (2021-12-08T12:57:13Z) - A State-of-the-art Survey of Artificial Neural Networks for Whole-slide
Image Analysis:from Popular Convolutional Neural Networks to Potential Visual
Transformers [18.031804027273292]
Whole slide image (WSI) has gradually played a crucial aspect in the diagnosis and analysis of diseases.
To increase the objectivity and accuracy of pathologists' work, artificial neural network (ANN) methods have been generally needed.
arXiv Detail & Related papers (2021-04-13T14:39:33Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z) - Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph
Neural Networks [52.76042362922247]
Graph neural networks (GNNs) are designed to handle the non-Euclidean graph-structure.
Existing GNNs are presented using various techniques, making direct comparison and cross-reference more complex.
We organize existing GNNs into spatial and spectral domains, as well as expose the connections within each domain.
arXiv Detail & Related papers (2020-02-27T01:15:10Z) - On Interpretability of Artificial Neural Networks: A Survey [21.905647127437685]
We systematically review recent studies in understanding the mechanism of neural networks, describe applications of interpretability especially in medicine.
We discuss future directions of interpretability research, such as in relation to fuzzy logic and brain science.
arXiv Detail & Related papers (2020-01-08T13:40:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.