Graph Neural Networks in Modern AI-aided Drug Discovery
- URL: http://arxiv.org/abs/2506.06915v1
- Date: Sat, 07 Jun 2025 20:29:59 GMT
- Title: Graph Neural Networks in Modern AI-aided Drug Discovery
- Authors: Odin Zhang, Haitao Lin, Xujun Zhang, Xiaorui Wang, Zhenxing Wu, Qing Ye, Weibo Zhao, Jike Wang, Kejun Ying, Yu Kang, Chang-yu Hsieh, Tingjun Hou,
- Abstract summary: Graph neural networks (GNNs) have emerged as powerful tools for AI-aided drug discovery (AIDD)<n>GNNs offer an intuitive and expressive framework for learning the complex topological and geometric features of drug-like molecules.<n>This review provides a comprehensive overview of the methodological foundations and representative applications of GNNs in drug discovery.
- Score: 16.25759507753197
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs), as topology/structure-aware models within deep learning, have emerged as powerful tools for AI-aided drug discovery (AIDD). By directly operating on molecular graphs, GNNs offer an intuitive and expressive framework for learning the complex topological and geometric features of drug-like molecules, cementing their role in modern molecular modeling. This review provides a comprehensive overview of the methodological foundations and representative applications of GNNs in drug discovery, spanning tasks such as molecular property prediction, virtual screening, molecular generation, biomedical knowledge graph construction, and synthesis planning. Particular attention is given to recent methodological advances, including geometric GNNs, interpretable models, uncertainty quantification, scalable graph architectures, and graph generative frameworks. We also discuss how these models integrate with modern deep learning approaches, such as self-supervised learning, multi-task learning, meta-learning and pre-training. Throughout this review, we highlight the practical challenges and methodological bottlenecks encountered when applying GNNs to real-world drug discovery pipelines, and conclude with a discussion on future directions.
Related papers
- Graph Neural Networks in Multi-Omics Cancer Research: A Structured Survey [1.0128808054306186]
Data integration for multi-omics data has emerged as a powerful strategy to unravel the biological underpinnings of cancer.<n>Recent advancements in graph neural networks (GNNs) offer an effective framework to model heterogeneous and structured omics data.
arXiv Detail & Related papers (2025-06-03T07:28:02Z) - Graph Foundation Models: Concepts, Opportunities and Challenges [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.<n>The capabilities of foundation models in generalization and adaptation motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.<n>This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
We propose an equivariant geometry-enhanced graph neural network called ViSNet, which elegantly extracts geometric features and efficiently models molecular structures.
Our proposed ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical property prediction on QM9 and Molecule3D datasets.
arXiv Detail & Related papers (2022-10-29T07:12:46Z) - Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks [80.8446673089281]
We study a new paradigm of knowledge transfer that aims at encoding graph topological information into graph neural networks (GNNs)
We propose Neural Heat Kernel (NHK) to encapsulate the geometric property of the underlying manifold concerning the architecture of GNNs.
A fundamental and principled solution is derived by aligning NHKs on teacher and student models, dubbed as Geometric Knowledge Distillation.
arXiv Detail & Related papers (2022-10-24T08:01:58Z) - Graph Neural Networks for Molecules [9.04563945965023]
This review introduces GNNs and their various applications for small organic molecules.
GNNs rely on message-passing operations, a generic yet powerful framework, to update node features iteratively.
arXiv Detail & Related papers (2022-09-12T20:10:07Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery.
We propose a representation-first approach to molecular graph generation.
We show that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.
arXiv Detail & Related papers (2021-10-12T18:00:23Z) - Quantitative Evaluation of Explainable Graph Neural Networks for
Molecular Property Prediction [2.8544822698499255]
Graph neural networks (GNNs) remain of limited acceptance in drug discovery due to their lack of interpretability.
In this work, we build three levels of benchmark datasets to quantitatively assess the interpretability of the state-of-the-art GNN models.
We implement recent XAI methods in combination with different GNN algorithms to highlight the benefits, limitations, and future opportunities for drug discovery.
arXiv Detail & Related papers (2021-07-01T04:49:29Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.