論文の概要: Evaluating the design space of diffusion-based generative models
- arxiv url: http://arxiv.org/abs/2406.12839v4
- Date: Sun, 27 Oct 2024 21:51:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:15:24.075585
- Title: Evaluating the design space of diffusion-based generative models
- Title(参考訳): 拡散型生成モデルの設計空間の評価
- Authors: Yuqing Wang, Ye He, Molei Tao,
- Abstract要約: この記事では、生成プロセス全体について、初めて定量的に理解する。
勾配降下下での復調スコアマッチングの非漸近収束解析を行う。
分散爆発モデルに対する精密サンプリング誤差解析も提供する。
- 参考スコア(独自算出の注目度): 21.483299796597404
- License:
- Abstract: Most existing theoretical investigations of the accuracy of diffusion models, albeit significant, assume the score function has been approximated to a certain accuracy, and then use this a priori bound to control the error of generation. This article instead provides a first quantitative understanding of the whole generation process, i.e., both training and sampling. More precisely, it conducts a non-asymptotic convergence analysis of denoising score matching under gradient descent. In addition, a refined sampling error analysis for variance exploding models is also provided. The combination of these two results yields a full error analysis, which elucidates (again, but this time theoretically) how to design the training and sampling processes for effective generation. For instance, our theory implies a preference toward noise distribution and loss weighting in training that qualitatively agree with the ones used in [Karras et al., 2022]. It also provides perspectives on the choices of time and variance schedules in sampling: when the score is well trained, the design in [Song et al., 2021] is more preferable, but when it is less trained, the design in [Karras et al., 2022] becomes more preferable.
- Abstract(参考訳): 拡散モデルの精度に関する既存の理論的な研究は、有意であるが、スコア関数が一定の精度に近似されたと仮定し、これを用いて生成の誤差を制御する。
この記事では、生成プロセス全体、すなわち、トレーニングとサンプリングの両方について、初めて定量的に理解する。
より正確には、勾配降下下でのdenoising score matchingの非漸近収束解析を行う。
また,分散爆発モデルに対する改良されたサンプリング誤差解析も提供する。
これら2つの結果を組み合わせて完全な誤差解析を行い、効率的な生成のためのトレーニングおよびサンプリングプロセスを設計する方法を解明する(しかし、理論上は)。
例えば、我々の理論は、[Karras et al , 2022]で使われているものと定性的に一致する訓練において、ノイズ分布と損失重み付けを好むことを示唆している。
スコアが十分に訓練されている場合、[Song et al , 2021]における設計の方が好ましいが、訓練が少ない場合は、[Karras et al , 2022]における設計の方が好ましい。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Leveraging Uncertainty Estimates To Improve Classifier Performance [4.4951754159063295]
バイナリ分類では、正のクラスのモデルスコアが、アプリケーション要求に基づいて選択されたしきい値を超えるかどうかに基づいて、インスタンスのラベルを予測する。
しかし、モデルスコアは真の肯定率と一致しないことが多い。
これは特に、クラス間の差分サンプリングを含むトレーニングや、トレインとテスト設定間の分散ドリフトがある場合に当てはまる。
論文 参考訳(メタデータ) (2023-11-20T12:40:25Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
線形回帰モデルを用いて条件平均処理効果(CATE)の予測における良性過剰適合理論について検討した。
一方,IPW-learnerは確率スコアが分かっていればリスクをゼロに収束させるが,T-learnerはランダムな割り当て以外の一貫性を達成できないことを示す。
論文 参考訳(メタデータ) (2022-02-10T18:51:52Z) - A Variational Perspective on Diffusion-Based Generative Models and Score
Matching [8.93483643820767]
連続時間生成拡散の確率推定のための変分フレームワークを導出する。
本研究は,プラグイン逆SDEの可能性の低い境界を最大化することと,スコアマッチング損失の最小化が等価であることを示す。
論文 参考訳(メタデータ) (2021-06-05T05:50:36Z) - Optimization Variance: Exploring Generalization Properties of DNNs [83.78477167211315]
ディープニューラルネットワーク(DNN)のテストエラーは、しばしば二重降下を示す。
そこで本研究では,モデル更新の多様性を測定するために,新しい測度である最適化分散(OV)を提案する。
論文 参考訳(メタデータ) (2021-06-03T09:34:17Z) - On the Inherent Regularization Effects of Noise Injection During
Training [12.614901374282868]
本稿では,学習データに人工雑音を注入することに対応する無作為摂動の一方法に関する理論的研究について述べる。
このようなランダム摂動学習問題の訓練と一般化誤差をランダム特徴モデル上で高精度に評価する。
論文 参考訳(メタデータ) (2021-02-15T07:43:18Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。