Demystifying Higher-Order Graph Neural Networks
- URL: http://arxiv.org/abs/2406.12841v2
- Date: Fri, 06 Dec 2024 14:57:59 GMT
- Title: Demystifying Higher-Order Graph Neural Networks
- Authors: Maciej Besta, Florian Scheidl, Lukas Gianinazzi, Grzegorz Kwasniewski, Shachar Klaiman, Jürgen Müller, Torsten Hoefler,
- Abstract summary: Higher-order graph neural networks (HOGNNs) and the related architectures from Topological Deep Learning are an important class of GNN models.
We use our taxonomy to analyze and compare the available HOGNN models.
The outcomes of our analysis are synthesized in a set of insights that help to select the most beneficial GNN model in a given scenario.
- Score: 17.85580660943616
- License:
- Abstract: Higher-order graph neural networks (HOGNNs) and the related architectures from Topological Deep Learning are an important class of GNN models that harness polyadic relations between vertices beyond plain edges. They have been used to eliminate issues such as over-smoothing or over-squashing, to significantly enhance the accuracy of GNN predictions, to improve the expressiveness of GNN architectures, and for numerous other goals. A plethora of HOGNN models have been introduced, and they come with diverse neural architectures, and even with different notions of what the "higher-order" means. This richness makes it very challenging to appropriately analyze and compare HOGNN models, and to decide in what scenario to use specific ones. To alleviate this, we first design an in-depth taxonomy and a blueprint for HOGNNs. This facilitates designing models that maximize performance. Then, we use our taxonomy to analyze and compare the available HOGNN models. The outcomes of our analysis are synthesized in a set of insights that help to select the most beneficial GNN model in a given scenario, and a comprehensive list of challenges and opportunities for further research into more powerful HOGNNs.
Related papers
- DenseGNN: universal and scalable deeper graph neural networks for high-performance property prediction in crystals and molecules [4.648990939177395]
We introduce DenseGNN, which employs Dense Connectivity Network (DCN), Hierarchical Node-Edge-Graph Residual Networks (HRN), and Local Structure Order Parameters Embedding (LOPE)
DenseGNN achieves state-of-the-art performance on datasets such as JARVIS-DFT, Materials Project, and QM9, improving the performance of models like GIN, Schnet, and Hamnet on materials datasets.
arXiv Detail & Related papers (2025-01-05T13:41:28Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
arXiv Detail & Related papers (2023-03-20T18:24:01Z) - LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation [51.552170474958736]
We propose to capture long-distance dependency in graphs by shallower models instead of deeper models, which leads to a much more efficient model, LazyGNN, for graph representation learning.
LazyGNN is compatible with existing scalable approaches (such as sampling methods) for further accelerations through the development of mini-batch LazyGNN.
Comprehensive experiments demonstrate its superior prediction performance and scalability on large-scale benchmarks.
arXiv Detail & Related papers (2023-02-03T02:33:07Z) - Understanding and Improving Deep Graph Neural Networks: A Probabilistic
Graphical Model Perspective [22.82625446308785]
We propose a novel view for understanding graph neural networks (GNNs)
In this work, we focus on deep GNNs and propose a novel view for understanding them.
We design a more powerful GNN: coupling graph neural network (CoGNet)
arXiv Detail & Related papers (2023-01-25T12:02:12Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - MGNN: Graph Neural Networks Inspired by Distance Geometry Problem [28.789684784093048]
Graph Neural Networks (GNNs) have emerged as a prominent research topic in the field of machine learning.
In this paper, we propose a GNN model inspired by the congruent-inphilic property of the classifiers in the classification phase of GNNs.
We extensively evaluate the effectiveness of our model through experiments conducted on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-01-31T04:15:42Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
We propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture.
Specifically, we design rich entity and edge updating operations to learn high-order representations.
We show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
arXiv Detail & Related papers (2021-09-03T07:53:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Architectural Implications of Graph Neural Networks [17.01480604968118]
Graph neural networks (GNN) represent an emerging line of deep learning models that operate on graph structures.
GNN is not as well understood in the system and architecture community as its counterparts such as multi-layer perceptrons and convolutional neural networks.
arXiv Detail & Related papers (2020-09-02T03:36:24Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.