HiT-JEPA: A Hierarchical Self-supervised Trajectory Embedding Framework for Similarity Computation
- URL: http://arxiv.org/abs/2507.00028v1
- Date: Tue, 17 Jun 2025 11:46:03 GMT
- Title: HiT-JEPA: A Hierarchical Self-supervised Trajectory Embedding Framework for Similarity Computation
- Authors: Lihuan Li, Hao Xue, Shuang Ao, Yang Song, Flora Salim,
- Abstract summary: We propose HiT-JEPA, a unified framework for learning multi-scale urban trajectory representations across semantic abstraction levels.<n>HiT-JEPA adopts a three-layer hierarchy that captures point-level fine-grained details, intermediate patterns, and high-level trajectory abstractions.<n>Experiments on multiple real-world datasets for trajectory similarity show that HiT-JEPA's hierarchical design yields richer, multi-scale representations.
- Score: 7.602963978226802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The representation of urban trajectory data plays a critical role in effectively analyzing spatial movement patterns. Despite considerable progress, the challenge of designing trajectory representations that can capture diverse and complementary information remains an open research problem. Existing methods struggle in incorporating trajectory fine-grained details and high-level summary in a single model, limiting their ability to attend to both long-term dependencies while preserving local nuances. To address this, we propose HiT-JEPA (Hierarchical Interactions of Trajectory Semantics via a Joint Embedding Predictive Architecture), a unified framework for learning multi-scale urban trajectory representations across semantic abstraction levels. HiT-JEPA adopts a three-layer hierarchy that progressively captures point-level fine-grained details, intermediate patterns, and high-level trajectory abstractions, enabling the model to integrate both local dynamics and global semantics in one coherent structure. Extensive experiments on multiple real-world datasets for trajectory similarity computation show that HiT-JEPA's hierarchical design yields richer, multi-scale representations. Code is available at: https://anonymous.4open.science/r/HiT-JEPA.
Related papers
- Universal Retrieval for Multimodal Trajectory Modeling [12.160448446091607]
Trajectory data holds significant potential for enhancing AI agent capabilities.<n>We introduce Multimodal Trajectory Retrieval, bridging the gap between universal retrieval and agent-centric trajectory modeling.
arXiv Detail & Related papers (2025-06-27T09:50:38Z) - EarthMapper: Visual Autoregressive Models for Controllable Bidirectional Satellite-Map Translation [50.433911327489554]
We introduce EarthMapper, a novel framework for controllable satellite-map translation.<n>We also contribute CNSatMap, a large-scale dataset comprising 302,132 precisely aligned satellite-map pairs across 38 Chinese cities.<n> experiments on CNSatMap and the New York dataset demonstrate EarthMapper's superior performance.
arXiv Detail & Related papers (2025-04-28T02:41:12Z) - TrajLearn: Trajectory Prediction Learning using Deep Generative Models [4.097342535693401]
Trajectory prediction aims to estimate an entity's future path using its current position and historical movement data.<n>To address these challenges, we introduce TrajLearn, a novel model for trajectory prediction.<n>TrajLearn predicts the next $k$ steps by integrating a customized beam search for exploring multiple potential paths.
arXiv Detail & Related papers (2024-12-30T23:38:52Z) - Context-Enhanced Multi-View Trajectory Representation Learning: Bridging the Gap through Self-Supervised Models [27.316692263196277]
MVTraj is a novel multi-view modeling method for trajectory representation learning.
It integrates diverse contextual knowledge, from GPS to road network and points-of-interest to provide a more comprehensive understanding of trajectory data.
Extensive experiments on real-world datasets demonstrate that MVTraj significantly outperforms existing baselines in tasks associated with various spatial views.
arXiv Detail & Related papers (2024-10-17T03:56:12Z) - T-JEPA: A Joint-Embedding Predictive Architecture for Trajectory Similarity Computation [6.844357745770191]
Trajectory similarity computation is an essential technique for analyzing moving patterns of spatial data across various applications.
We propose T-JEPA, a self-supervised trajectory similarity method employing Joint-Embedding Predictive Architecture (JEPA) to enhance trajectory representation learning.
arXiv Detail & Related papers (2024-06-13T09:51:51Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Generation Drawing/Grinding Trajectoy Based on Hierarchical CVAE [4.817429789586127]
We propose a method to model the local and global features of the drawing/grinding trajectory with hierarchical Variational Autoencoders (VAEs)
The hierarchical generation network enables the generation of higher-order trajectories with a relatively small amount of training data.
It is possible to generate new trajectories, which have never been learned in the past, by changing the combination of the learned models.
arXiv Detail & Related papers (2021-11-22T02:40:06Z) - HUMAP: Hierarchical Uniform Manifold Approximation and Projection [42.50219822975012]
This work presents HUMAP, a novel hierarchical dimensionality reduction technique designed to be flexible on preserving local and global structures.
We provide empirical evidence of our technique's superiority compared with current hierarchical approaches and show a case study applying HUMAP for dataset labelling.
arXiv Detail & Related papers (2021-06-14T19:27:54Z) - Densely Nested Top-Down Flows for Salient Object Detection [137.74130900326833]
This paper revisits the role of top-down modeling in salient object detection.
It designs a novel densely nested top-down flows (DNTDF)-based framework.
In every stage of DNTDF, features from higher levels are read in via the progressive compression shortcut paths (PCSP)
arXiv Detail & Related papers (2021-02-18T03:14:02Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.