論文の概要: Graphormer-Guided Task Planning: Beyond Static Rules with LLM Safety Perception
- arxiv url: http://arxiv.org/abs/2503.06866v1
- Date: Mon, 10 Mar 2025 02:43:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:28.327058
- Title: Graphormer-Guided Task Planning: Beyond Static Rules with LLM Safety Perception
- Title(参考訳): Graphormer-Guided Task Planning: LLMの安全性を考慮した静的ルールを超えて
- Authors: Wanjing Huang, Tongjie Pan, Yalan Ye,
- Abstract要約: 本稿では,大規模言語モデルと構造化安全モデリングを組み合わせたリスク対応タスク計画フレームワークを提案する。
提案手法は,空間的および文脈的危険因子を抽出し,動的セマンティック安全グラフを構築する。
既定の安全性制約に依存する既存の手法とは異なり、我々のフレームワークはコンテキスト認識型リスク認識モジュールを導入している。
- 参考スコア(独自算出の注目度): 4.424170214926035
- License:
- Abstract: Recent advancements in large language models (LLMs) have expanded their role in robotic task planning. However, while LLMs have been explored for generating feasible task sequences, their ability to ensure safe task execution remains underdeveloped. Existing methods struggle with structured risk perception, making them inadequate for safety-critical applications where low-latency hazard adaptation is required. To address this limitation, we propose a Graphormer-enhanced risk-aware task planning framework that combines LLM-based decision-making with structured safety modeling. Our approach constructs a dynamic spatio-semantic safety graph, capturing spatial and contextual risk factors to enable online hazard detection and adaptive task refinement. Unlike existing methods that rely on predefined safety constraints, our framework introduces a context-aware risk perception module that continuously refines safety predictions based on real-time task execution. This enables a more flexible and scalable approach to robotic planning, allowing for adaptive safety compliance beyond static rules. To validate our framework, we conduct experiments in the AI2-THOR environment. The experiments results validates improvements in risk detection accuracy, rising safety notice, and task adaptability of our framework in continuous environments compared to static rule-based and LLM-only baselines. Our project is available at https://github.com/hwj20/GGTP
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、ロボットタスク計画における役割を拡大している。
しかしながら、LLMは実行可能なタスクシーケンスを生成するために検討されているが、安全なタスク実行を保証する能力は未開発のままである。
既存の手法は構造的リスク認識に苦しむため、低遅延ハザード適応を必要とする安全クリティカルなアプリケーションには不適当である。
この制限に対処するため,LLMに基づく意思決定と構造的安全モデリングを組み合わせたリスク対応タスク計画フレームワークを提案する。
提案手法は,空間的および文脈的危険因子を捕捉し,オンラインのハザード検出と適応的タスク改善を可能にする動的スポース・セマンティック・セーフティグラフを構築する。
既定の安全性制約に依存する既存の手法とは違って,我々のフレームワークでは,リアルタイムタスク実行に基づく安全性予測を継続的に改善するコンテキスト認識型リスク認識モジュールを導入している。
これにより、ロボット計画に対するより柔軟でスケーラブルなアプローチが可能になり、静的なルールを超えた適応型安全コンプライアンスが可能になる。
フレームワークを検証するため、AI2-THOR環境で実験を行う。
その結果, 静的ルールベースやLCMのみのベースラインと比較して, リスク検出精度の向上, 安全性通知の増大, 継続的環境におけるフレームワークのタスク適応性の向上が検証された。
私たちのプロジェクトはhttps://github.com/hwj20/GGTPで利用可能です。
関連論文リスト
- AGrail: A Lifelong Agent Guardrail with Effective and Adaptive Safety Detection [47.83354878065321]
我々は,エージェントの安全性を高めるため,生涯のガードレールであるAGrailを提案する。
AGrailは適応型安全チェック生成、効果的な安全チェック最適化、ツールの互換性と柔軟性を備えている。
論文 参考訳(メタデータ) (2025-02-17T05:12:33Z) - Progressive Safeguards for Safe and Model-Agnostic Reinforcement Learning [5.593642806259113]
我々は、各タスクが安全を監視し、エージェントに報酬信号を提供するセーフガードと同期するメタラーニングプロセスをモデル化する。
セーフガードの設計は手動だが、高レベルでモデルに依存しないため、エンドツーエンドの安全な学習アプローチがもたらされる。
我々は、MinecraftにインスパイアされたGridworld、VizDoomゲーム環境、LLMファインチューニングアプリケーションでフレームワークを評価した。
論文 参考訳(メタデータ) (2024-10-31T16:28:33Z) - Current state of LLM Risks and AI Guardrails [0.0]
大規模言語モデル(LLM)はますます洗練され、安全性と信頼性が最優先されるセンシティブなアプリケーションに広くデプロイされるようになる。
これらのリスクは、LSMを望ましい行動と整合させ、潜在的な害を軽減するために、"ガードレール"の開発を必要とする。
本研究は,LLMの展開に伴うリスクを調査し,ガードレールの実装とモデルアライメント技術に対する現在のアプローチを評価する。
論文 参考訳(メタデータ) (2024-06-16T22:04:10Z) - Introspective Planning: Aligning Robots' Uncertainty with Inherent Task Ambiguity [0.659529078336196]
大規模言語モデル(LLM)は高度な推論能力を示し、ロボットが自然言語の指示を理解し、高レベルの行動を戦略的に計画することを可能にする。
LLMの幻覚は、ロボットがユーザー目標と不一致の計画を実行したり、クリティカルなシナリオでは安全でないりする可能性がある。
本稿では,LLMの不確かさとタスク固有のあいまいさを一致させる系統的手法であるイントロスペクティブプランニングを提案する。
論文 参考訳(メタデータ) (2024-02-09T16:40:59Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
本研究では,環境を協調的に学習し,制御ポリシーを最適化する安全な強化学習手法を提案する。
本手法は, 安全性の制約を効果的に適用し, シミュレーションにより測定したシステム安全率においてCMDPベースのベースライン法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - MESA: Offline Meta-RL for Safe Adaptation and Fault Tolerance [73.3242641337305]
最近の研究は、制約に違反する確率を測定するリスク尺度を学習し、安全を可能にするために使用することができる。
我々は,安全な探索をオフラインのメタRL問題とみなし,様々な環境における安全かつ安全でない行動の例を活用することを目的としている。
次に,メタラーニングシミュレーションのアプローチであるMESA(Meta-learning for Safe Adaptation)を提案する。
論文 参考訳(メタデータ) (2021-12-07T08:57:35Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
強化学習(Reinforcement Learning, RL)は,現実のアプリケーションに対して限られた成功を収める,有望なアプローチである。
本稿では,複数の側面からなる学習型制御フレームワークを提案する。
ECBFをベースとしたモジュラーディープRLアルゴリズムは,ほぼ完全な成功率を達成し,高い確率で安全性を保護することを示す。
論文 参考訳(メタデータ) (2021-09-07T00:51:12Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
本稿では,無線アクセスネットワーク(RAN)アプリケーションの安全管理のためのシンボル強化学習(SRL)アーキテクチャを提案する。
我々は、ユーザが所定のセルネットワークトポロジに対して高レベルの論理的安全性仕様を指定できる純粋に自動化された手順を提供する。
ユーザがシステムに意図仕様を設定するのを支援するために開発されたユーザインターフェース(UI)を導入し、提案するエージェントの動作の違いを検査する。
論文 参考訳(メタデータ) (2021-06-03T16:45:40Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
安全運転の最大確率を学習するモデルフリー安全仕様法を提案する。
提案手法は, 各政策改善段階を抑制するための安全な政策に関して, リャプノフ関数を構築する。
安全集合と呼ばれる安全な操作範囲を決定する一連の安全なポリシーを導出する。
論文 参考訳(メタデータ) (2020-02-24T09:20:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。