Under the Hood of Tabular Data Generation Models: the Strong Impact of Hyperparameter Tuning
- URL: http://arxiv.org/abs/2406.12945v2
- Date: Fri, 12 Jul 2024 07:16:33 GMT
- Title: Under the Hood of Tabular Data Generation Models: the Strong Impact of Hyperparameter Tuning
- Authors: G. Charbel N. Kindji, Lina Maria Rojas-Barahona, Elisa Fromont, Tanguy Urvoy,
- Abstract summary: This study addresses the practical need for a unified evaluation of models.
We propose a reduced search space for each model that allows for quick optimization.
For most models, large-scale dataset-specific tuning substantially improves performance compared to the original configurations.
- Score: 2.5168710814072894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the impact of dataset-specific hyperparameter, feature encoding, and architecture tuning on five recent model families for tabular data generation through an extensive benchmark on 16 datasets. This study addresses the practical need for a unified evaluation of models that fully considers hyperparameter optimization. Additionally, we propose a reduced search space for each model that allows for quick optimization, achieving nearly equivalent performance at a significantly lower cost.Our benchmark demonstrates that, for most models, large-scale dataset-specific tuning substantially improves performance compared to the original configurations. Furthermore, we confirm that diffusion-based models generally outperform other models on tabular data. However, this advantage is not significant when the entire tuning and training process is restricted to the same GPU budget for all models.
Related papers
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - TabDiff: a Mixed-type Diffusion Model for Tabular Data Generation [91.50296404732902]
We introduce TabDiff, a joint diffusion framework that models all mixed-type distributions of tabular data in one model.
Our key innovation is the development of a joint continuous-time diffusion process for numerical and categorical data.
TabDiff achieves superior average performance over existing competitive baselines, with up to $22.5%$ improvement over the state-of-the-art model on pair-wise column correlation estimations.
arXiv Detail & Related papers (2024-10-27T22:58:47Z) - Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws [59.03420759554073]
We introduce Adaptive Data Optimization (ADO), an algorithm that optimize data distributions in an online fashion, concurrent with model training.
ADO does not require external knowledge, proxy models, or modifications to the model update.
ADO uses per-domain scaling laws to estimate the learning potential of each domain during training and adjusts the data mixture accordingly.
arXiv Detail & Related papers (2024-10-15T17:47:44Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Crafting Efficient Fine-Tuning Strategies for Large Language Models [2.633490094119608]
Fine-tuning large language models (LLMs) with as few as 200 samples can improve model accuracy from 70% to 88% in a product attribute extraction task.
A bayesian hyperparameter optimization method, which evaluates models at 20% of total training time, correlates strongly with final model performance.
This approach led to a 2% improvement in accuracy over baseline models when evaluated on an independent test set.
arXiv Detail & Related papers (2024-07-18T21:36:00Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEn is inspired by'matching', which enables implicit guidance without training a discriminator.
We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution.
arXiv Detail & Related papers (2024-05-28T11:30:19Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
We propose a novel Variational Autoencoder (VAE)-based model that addresses limitations of current approaches.
Inspired by the TVAE model, our approach incorporates a Bayesian Gaussian Mixture model (BGM) within the VAE architecture.
We thoroughly validate our model on three real-world datasets with mixed data types, including two medically relevant ones.
arXiv Detail & Related papers (2024-04-12T12:31:06Z) - FissionFusion: Fast Geometric Generation and Hierarchical Souping for Medical Image Analysis [0.7751705157998379]
The scarcity of well-annotated medical datasets requires leveraging transfer learning from broader datasets like ImageNet or pre-trained models like CLIP.
Model soups averages multiple fine-tuned models aiming to improve performance on In-Domain (ID) tasks and enhance robustness against Out-of-Distribution (OOD) datasets.
We propose a hierarchical merging approach that involves local and global aggregation of models at various levels.
arXiv Detail & Related papers (2024-03-20T06:48:48Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Not All Data Matters: An End-to-End Adaptive Dataset Pruning Framework
for Enhancing Model Performance and Efficiency [9.460023981858319]
We propose an end-to-end Adaptive DAtaset PRUNing framework called AdaPruner.
AdaPruner iteratively prunes redundant samples to an expected pruning ratio.
It can still significantly enhance model performance even after pruning up to 10-30% of the training data.
arXiv Detail & Related papers (2023-12-09T16:01:21Z) - Fairer and More Accurate Tabular Models Through NAS [14.147928131445852]
We propose using multi-objective Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO) in the first application to the very challenging domain of tabular data.
We show that models optimized solely for accuracy with NAS often fail to inherently address fairness concerns.
We produce architectures that consistently dominate state-of-the-art bias mitigation methods either in fairness, accuracy or both.
arXiv Detail & Related papers (2023-10-18T17:56:24Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How [62.467716468917224]
We propose a methodology that jointly searches for the optimal pretrained model and the hyperparameters for finetuning it.
Our method transfers knowledge about the performance of many pretrained models on a series of datasets.
We empirically demonstrate that our resulting approach can quickly select an accurate pretrained model for a new dataset.
arXiv Detail & Related papers (2023-06-06T16:15:26Z) - Deep incremental learning models for financial temporal tabular datasets
with distribution shifts [0.9790236766474201]
The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity.
We demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions.
arXiv Detail & Related papers (2023-03-14T14:10:37Z) - Prototypical Fine-tuning: Towards Robust Performance Under Varying Data
Sizes [47.880781811936345]
We propose a novel framework for fine-tuning pretrained language models (LM)
Our prototypical fine-tuning approach can automatically adjust the model capacity according to the number of data points and the model's inherent attributes.
arXiv Detail & Related papers (2022-11-24T14:38:08Z) - A Case for Dataset Specific Profiling [0.9023847175654603]
Data-driven science is an emerging paradigm where scientific discoveries depend on the execution of computational AI models against rich, discipline-specific datasets.
With modern machine learning frameworks, anyone can develop and execute computational models that reveal concepts hidden in the data that could enable scientific applications.
For important and widely used datasets, computing the performance of every computational model that can run against a dataset is cost prohibitive in terms of cloud resources.
arXiv Detail & Related papers (2022-08-01T18:38:05Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - A Simple and Fast Baseline for Tuning Large XGBoost Models [8.203493207581937]
We show that uniform subsampling makes for a simple yet fast baseline to speed up the tuning of large XGBoost models.
We demonstrate the effectiveness of this baseline on large-scale datasets ranging from $15-70mathrmGB$ in size.
arXiv Detail & Related papers (2021-11-12T20:17:50Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.