Assessing AI vs Human-Authored Spear Phishing SMS Attacks: An Empirical Study Using the TRAPD Method
- URL: http://arxiv.org/abs/2406.13049v1
- Date: Tue, 18 Jun 2024 20:47:16 GMT
- Title: Assessing AI vs Human-Authored Spear Phishing SMS Attacks: An Empirical Study Using the TRAPD Method
- Authors: Jerson Francia, Derek Hansen, Ben Schooley, Matthew Taylor, Shydra Murray, Greg Snow,
- Abstract summary: This paper explores the rising concern of utilizing Large Language Models (LLMs) in spear phishing message generation.
Our pilot study compares the effectiveness of smishing (SMS phishing) messages created by GPT-4 and human authors, which have been personalized to willing targets.
- Score: 1.099532646524593
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper explores the rising concern of utilizing Large Language Models (LLMs) in spear phishing message generation, and their performance compared to human-authored counterparts. Our pilot study compares the effectiveness of smishing (SMS phishing) messages created by GPT-4 and human authors, which have been personalized to willing targets. The targets assessed the messages in a modified ranked-order experiment using a novel methodology we call TRAPD (Threshold Ranking Approach for Personalized Deception). Specifically, targets provide personal information (job title and location, hobby, item purchased online), spear smishing messages are created using this information by humans and GPT-4, targets are invited back to rank-order 12 messages from most to least convincing (and identify which they would click on), and then asked questions about why they ranked messages the way they did. They also guess which messages are created by an LLM and their reasoning. Results from 25 targets show that LLM-generated messages are most often perceived as more convincing than those authored by humans, with messages related to jobs being the most convincing. We characterize different criteria used when assessing the authenticity of messages including word choice, style, and personal relevance. Results also show that targets were unable to identify whether the messages was AI-generated or human-authored and struggled to identify criteria to use in order to make this distinction. This study aims to highlight the urgent need for further research and improved countermeasures against personalized AI-enabled social engineering attacks.
Related papers
- Seeing Through AI's Lens: Enhancing Human Skepticism Towards LLM-Generated Fake News [0.38233569758620056]
This paper aims to elucidate simple markers that help individuals distinguish between articles penned by humans and those created by LLMs.
We then devise a metric named Entropy-Shift Authorship Signature (ESAS) based on the information theory and entropy principles.
The proposed ESAS ranks terms or entities, like POS tagging, within news articles based on their relevance in discerning article authorship.
arXiv Detail & Related papers (2024-06-20T06:02:04Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
Phishing, a prevalent cybercrime tactic for decades, remains a significant threat in today's digital world.
This paper aims to analyze the effectiveness of 15 Large Language Models (LLMs) in detecting phishing attempts.
arXiv Detail & Related papers (2024-04-23T19:55:18Z) - How Well Can LLMs Echo Us? Evaluating AI Chatbots' Role-Play Ability with ECHO [55.25989137825992]
We introduce ECHO, an evaluative framework inspired by the Turing test.
This framework engages the acquaintances of the target individuals to distinguish between human and machine-generated responses.
We evaluate three role-playing LLMs using ECHO, with GPT-3.5 and GPT-4 serving as foundational models.
arXiv Detail & Related papers (2024-04-22T08:00:51Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - Fine-tuning Language Models for Factuality [96.5203774943198]
Large pre-trained language models (LLMs) have led to their widespread use, sometimes even as a replacement for traditional search engines.
Yet language models are prone to making convincing but factually inaccurate claims, often referred to as 'hallucinations'
In this work, we fine-tune language models to be more factual, without human labeling.
arXiv Detail & Related papers (2023-11-14T18:59:15Z) - A Quantitative Study of SMS Phishing Detection [0.0]
We conducted an online survey on smishing detection with 187 participants.
We presented them with 16 SMS screenshots and evaluated how different factors affect their decision making process in smishing detection.
We found that participants had more difficulty identifying real messages from fake ones, with an accuracy of 67.1% with fake messages and 43.6% with real messages.
arXiv Detail & Related papers (2023-11-12T17:56:42Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - RADAR: Robust AI-Text Detection via Adversarial Learning [69.5883095262619]
RADAR is based on adversarial training of a paraphraser and a detector.
The paraphraser's goal is to generate realistic content to evade AI-text detection.
RADAR uses the feedback from the detector to update the paraphraser, and vice versa.
arXiv Detail & Related papers (2023-07-07T21:13:27Z) - ChatGPT-4 Outperforms Experts and Crowd Workers in Annotating Political
Twitter Messages with Zero-Shot Learning [0.0]
This paper assesses the accuracy, reliability and bias of the Large Language Model (LLM) ChatGPT-4 on the text analysis task of classifying the political affiliation of a Twitter poster based on the content of a tweet.
We use Twitter messages from United States politicians during the 2020 election, providing a ground truth against which to measure accuracy.
arXiv Detail & Related papers (2023-04-13T14:51:40Z) - Targeted Phishing Campaigns using Large Scale Language Models [0.0]
Phishing emails are fraudulent messages that aim to trick individuals into revealing sensitive information or taking actions that benefit the attackers.
We propose a framework for evaluating the performance of NLMs in generating these types of emails based on various criteria, including the quality of the generated text.
Our evaluations show that NLMs are capable of generating phishing emails that are difficult to detect and that have a high success rate in tricking individuals, but their effectiveness varies based on the specific NLM and training data used.
arXiv Detail & Related papers (2022-12-30T03:18:05Z) - Few-Shot Stance Detection via Target-Aware Prompt Distillation [48.40269795901453]
This paper is inspired by the potential capability of pre-trained language models (PLMs) serving as knowledge bases and few-shot learners.
PLMs can provide essential contextual information for the targets and enable few-shot learning via prompts.
Considering the crucial role of the target in stance detection task, we design target-aware prompts and propose a novel verbalizer.
arXiv Detail & Related papers (2022-06-27T12:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.